Binding energies of different elements - PowerPoint PPT Presentation

1 / 11
About This Presentation
Title:

Binding energies of different elements

Description:

Binding energies of different elements. Quantum Tunnelling. Coulomb Potential: Ec = ZAZBe2 / 4pe0r ... EG = (p ZAZB)2 2mrc2. mr = mAmB/(mA mB) = e2 / (4pe0?c) 1 ... – PowerPoint PPT presentation

Number of Views:26
Avg rating:3.0/5.0
Slides: 12
Provided by: phi51
Category:

less

Transcript and Presenter's Notes

Title: Binding energies of different elements


1
Binding energies of different elements
2
Quantum Tunnelling
  • Coulomb Potential
  • Ec ZAZBe2 / 4pe0r
  • Tunnelling probability
  • Ptunnel ? exp(-(EG/E)0.5)

Gamow Energy EG (p?ZAZB)2 2mrc2 mr
mAmB/(mAmB) ? e2 / (4pe0?c) ? 1/137
3
Energy-dependent fusion rates
  • Dashed line Boltzmann factor, PBoltz ?
    exp(-E/kT)
  • Dot-dash line Tunnelling factor, Ptun ?
    exp(-(EG/E)0.5
  • Solid line Product gives the reaction rate,
    which peaks at about E0 (kT/2)2/3 EG1/3

Sun EG 493keV T 1.6x107 K ? kT
1.4keV Hence E0 ? 6.2 keV (? 4.4 kT)
4
The PP chain the main branch
9x
9x
5
The PP chain
  • 85 in Sun
  • 15 in Sun
  • 0.02 in Sun

6
The CNO Cycle
  • Slowest reaction in this case 14N p ? 15O ?.
  • 14N lives for 5x108 yr.
  • Abundances 12C 4, 13C 1, 14N 95, 15N
    0.004

7
(No Transcript)
8
Recap
  • Equation of continuity
  • dM(r)/dr 4 p r2 ?
  • Equation of hydrostatic equilibrium
  • dP/dr -G M(r) ?
    / r2
  • Equation of energy generation
  • dL/dr 4 p r2 ? e
  • where e epp eCNO is energy generation rate
    per kg.
  • e e0?Ta
  • where a4 for pp chain and a17-20 for CNO cycle.

9
Discussion random walk
  • Consider tossing a coin N times (where N is
    large). It
  • comes as heads NH times and tails NT times.
  • Let D NH NT.
  • What do you expect the distribution of possible
    values of D to look like (centre, shape)?
  • How do you expect the distribution of D to change
    with N?
  • Would you ever expect D to get larger than 100?
    If so, for what sort of value of N?

10
Random Walk
  • Photon scattered N times
  • r1 r2 r3 r4 rN
  • Mean position after N scatterings
  • lt?gt ltr1gt ltr2gt ltr3gt ltrNgt 0
  • But, mean average distance travelled ? comes
    from
  • ?.? ?2, hence ? (?.?)0.5
  • ?.? (r1 r2 r3 r4 rN).(r1 r2 r3
    r4 rN)
  • (r1.r1 r2.r2 r3.r3 rN.rN)
  • (r1.r2 r1.r3 r1.r4 r2.r1
    r2.r3 r2.r4 r3.r1 r3.r2 r3.r4 )
  • ? (ri.ri) Nl2
  • ? ? (vN) l

0
11
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com