EE 7730 - PowerPoint PPT Presentation

About This Presentation
Title:

EE 7730

Description:

Two semiconductor wafer images are given. You are supposed to ... Opening smoothes regions, removes spurs, breaks narrow lines. Bahadir K. Gunturk. 24 ... – PowerPoint PPT presentation

Number of Views:16
Avg rating:3.0/5.0
Slides: 52
Provided by: ece5
Learn more at: https://www.ece.lsu.edu
Category:
Tags: spurs

less

Transcript and Presenter's Notes

Title: EE 7730


1
EE 7730
  • Morphological Image Processing

2
Example
Two semiconductor wafer images are given. You are
supposed to determine the defects based on these
images.
3
Example
4
Example
Absolute value of the difference
5
Example
gtgt b zeros(size(a)) gtgt b(agt100) 1 gtgt
figure imshow(b, )
6
Example
gtgt c imerode(b,ones(3,3)) gtgt figure
imshow(c,)
7
Example
gtgt d imdilate(c,ones(3,3)) gtgt figure
imshow(d,)
8
Mathematical Morphology
  • We defined an image as a two-dimensional
    function, f(x,y), of discrete (or real)
    coordinate variables, (x,y).
  • An alternative definition of an image can be
    based on the notion that an image consists of a
    set of discrete (or continuous) coordinates.

9
Morphology
A binary image containing two object sets A and B
  • B (0,0), (0,1), (1,0)
  • A (5,0), (3,1), (4,1), (5,1), (3,2), (4,2),
    (5,2)

10
Morphology
  • Sets in morphology represent the shapes of
    objects in an image.
  • For example, the set A (a1,a2) represents a
    point in a binary image.
  • The set of all black pixels in a binary image is
    a complete description of the image.

11
Morphology
  • Morphology can be extended to gray-scale images.
  • In gray-scale images, sets consist of elements
    whose components are in a 3D space.
  • For example, the set A (a1,a2,a3) is a point
    at coordinates (a1,a2) with gray-scale intensity
    (a3).

12
Mathematical Morphology
  • Morphology is a tool for extracting and
    processing image components based on shapes.
  • Morphological techniques include filtering,
    erosion, dilation, thinning, pruning.

13
Basic Set Operations
14
Some Basic Definitions
  • Let A and B be sets with components a(a1,a2) and
    b(b1,b2), respectively.
  • The translation of A by x(x1,x2) is
  • A x c c a x, for a ? A
  • The reflection of A is
  • Ar x x -a for a ? A
  • The complement of A is
  • Ac x x ? A
  • The union of A and B is
  • A ? B x x ? A or x ? B
  • The intersection of A and B is
  • A ? B x x ? A and x ? B

15
Some Basic Definitions
  • The difference of A and B is.
  • A B A ? Bc x x ? A and x ? B
  • A and B are said to be disjoint or mutually
    exclusive if they have no common elements.
  • If every element of a set A is also an element of
    another set B, then A is said to be a subset of
    B.

16
Logic Operations
17
Some Basic Definitions
  • Dilation
  • A ? B x (B x) ? A ? ?
  • Dilation expands a region.

18
Some Basic Definitions
19
Some Basic Definitions
20
Some Basic Definitions
  • Erosion
  • A ? B x (B x) ? A
  • Erosion shrinks a region.

21
Some Basic Definitions
22
Some Basic Definitions
  • Dilation and erosion are duals of each other
  • (A ? B)c Ac ? Br

23
Some Basic Definitions
  • Opening is erosion followed by dilation
  • A ? B (A ? B) ? B
  • Opening smoothes regions, removes spurs, breaks
    narrow lines.

24
Some Basic Definitions
25
Some Basic Definitions
  • Closing is dilation followed by erosion
  • A ? B (A ? B) ? B
  • Closing fills narrow gaps and holes in a region.

26
Some Basic Definitions
27
Some Basic Definitions
28
Some Morphological Algorithms
  • Opening followed by closing can eliminate noise
  • (A ? B) ? B

29
Some Morphological Algorithms
30
Some Morphological Algorithms
  • Boundary of a set, A, can be found by
  • A - (A ? B)

B
31
Some Morphological Algorithms
  • A region can be filled iteratively by
  • Xk1 (Xk ? B) ? Ac ,
  • where k 0,1,
  • and X0 is a point inside the region.

32
Some Morphological Algorithms
33
Some Morphological Algorithms
  • Connected components can be extracted iteratively
    by
  • Xk1 (Xk ? B) ? A ,
  • where k 0,1,
  • and X0 is the initial point.

34
Some Morphological Algorithms
Application example Using connected components
to detect foreign objects in packaged food. There
are four objects with significant size!
35
Some Basic Definitions
  • Hit-or-miss operation detects shapes
  • A ? B (A ? X) ? Ac ? (W-X)
  • where A consists of shape X and other shapes,
  • B consists of shape X only,
  • and W is a window that is larger than X.

36
Some Morphological Algorithms
  • Thinning Thin regions iteratively retain
    connections and endpoints.
  • Skeletons Reduces regions to lines of one pixel
    thick preserves shape.
  • Convex hull Follows outline of a region except
    for concavities.
  • Pruning Removes small branches.

37
Thinning
38
Skeleton
39
Pruning
40
Summary
41
Summary
42
Summary
43
Summary
44
Summary
45
Extensions to Gray-Scale Images
Dilation
46
Extensions to Gray-Scale Images
Erosion
47
Extensions to Gray-Scale Images
  • Dilation
  • Makes image brighter
  • Reduces or eliminates dark details
  • Erosion
  • Makes image lighter
  • Reduces or eliminates bright details

48
Extensions to Gray-Scale Images
49
Extensions to Gray-Scale Images
Opening Narrow bright areas are
reduced. Closing Narrow dark areas are reduced.
50
Extensions to Gray-Scale Images
Opening followed by closing ?Morphological
smoothing operation. Removes or attenuates both
bright and dark artifacts/noise.
51
Extensions to Gray-Scale Images
52
Application Example
53
Application Example-Segmentation
54
Application Example-Granulometry
Write a Comment
User Comments (0)
About PowerShow.com