Title: Statistical Signal Processing for fMRI
1Statistical Signal Processing for fMRI
- Douglas N. Greve
- Mark Vangel
- Anastasia Yendiki
2Overview
- First-Level Univariate Analysis
- Signal Modeling
- Nuisance Modeling
- Noise Modeling
- Hypothesis Testing
- Correction for Multiple Comparisons
- Cross-Subject/Higher Level Analysis
- Lab
3Analysis Goals
- Quantify Neural Correlates in fMRI
- Amplitude of Hemodynamic Response
- Delay/Shape of Hemodynamic Response
- Extent/Size of Activation
- Localization of function
- Quantify Uncertainty
- Cross-subject (within group)
- Cross-group eg, Normals, Clinical Populations
- Within-subject EEG/MEG/Optical/Surgical
Planning
4Challenges
- Large Noise thermal, physiological, motion
- Small Signal delay, dispersion
- Structural/Functional Alignment within subject
- Intersubject Alignment
- Copious amounts of data eg, 20 subjects, 5 runs
per subject, 100 time points per run, 64x64x30
volume 1.2G data points - More spatial voxels than time points (multiple
comparisons problem). - Model Validation
5Method
- Correlational synchronized stimulus and
acquistion - Linear/Gaussian Assumptions
- GLM General Linear Model
- MSE Minimum Square Error
- LMS Least Mean Squares
- Massively Univariate
6Hemodynamic Response (BOLD)
TR (2sec)
Equilibrium (16-32sec)
Delay (1-2sec)
7fMRI Noise
Synthetic data.
8Averaging
Synthetic data.
9Typical Analysis Stream
- Preprocessing
- Univariate First-Level GLM Analysis
- Univariate Higher-Level GLM Analysis
- Multivariate Analysis
- Packages
- SPM Statistical Parametric Mapping
- AFNI Analysis of Functional NeuroImages
- FSL fMRI Software Library
- FS-FAST FreeSurfer Functional Analysis STream
10Preprocessing
- k-Space reconstruction
- Slice-Timing Correction (?)
- Motion Correction
- Spatial Filtering (Smoothing - FWHM)
- Intensity Normalization
- Temporal Filtering (or in analysis)
- Per-run, within subject
11Univariate First-Level Analysis
- Per-voxel, per-subject
- Postulate model of the observable (ie raw time
course) - Signal model (eg, hemodynamic response)
- Noise model (eg, autocorrelation function)
- Drift (eg, mean offset, linear, quadratic)
- General Linear Model (GLM)
- Parameterized
- Linear (superposition)
- Least-mean-square estimation of parameters
- Hypothesis Test Contrast of Parameters
- Assemble into a map
12Univariate High-level Analysis
- Per-voxel, Cross-subject
- Requires intersubject registration
- Dave Kennedy
- Uses information from First/Lower Levels
- GLM to describe relationship
- Random Effects
- Fixed Effects
13Multivariate Statistics
- Cross-voxel (within map)
- Thresholding and multiple comparisons problem
- Gaussian Random Fields (GRF)
- Principal Component Analysis (PCA/SVD)
- Independent Component Analysis
- Region-of-Interest
14(No Transcript)
15Hemodynamic Response Model
TR (2sec)
Equilibrium (16-32sec)
Delay (1-2sec)
16Visual Activation Paradigm
Flickering Checkerboard
Visual, Auditory, Motor, Tactile, Pain,
Perceptual, Recognition, Memory, Emotion,
Reward/Punishment, Olfactory, Taste, Gastral,
Gambling, Economic, Acupuncture, Meditation, The
Pepsi Challenge,
- Scientific
- Clinical
- Pharmaceutical
17 Blood Oxygen Level Dependence (BOLD)
Neurons
Deoxygenated Hemoglobin (ParaMagnetic)
Oxygenated Hemoglobin (DiaMagnetic)
Lungs
Oxygen
CO2
18 Functional MRI (fMRI)
Sample BOLD response in 4D Space (3D) voxels
(64x64x35, 3x3x5mm3) Time (1D) time points
(100, 2 sec)
Time 3
Time 1
Time 2
19 Analysis Goals
- Given
- raw fMRI time course and
- stimulus presentation times
- Compute
- Hemodynamic Response (HRF) Amplitude
- HRF Confidence Interval
- P-Value
- Noise Amplitude
Quantify Uncertainty
20Final Results Maps
- Assign values to each voxel
- Display as pseudo-color images
- Threshold?
21Final Results Tables
Cluster Number TalX (mm) TalY (mm) TalZ (mm) Volume (mm3) Sig (log10)
1 -30.5 13.2 0.2 125.6 5.7
2 4.5 9.7 -20.2 878.1 4.1
3 2.9 -18.0 17.7 400.3 3.2
22Final Results Waveforms
- Average raw data over time and space