Macroeconomic VS' CGE Models - PowerPoint PPT Presentation

1 / 50
About This Presentation
Title:

Macroeconomic VS' CGE Models

Description:

For example, we re-arrange the E/D ratio equation to calculate the ... this example, the CET equation is re-arranged, enabling us to obtain the value of at. ... – PowerPoint PPT presentation

Number of Views:101
Avg rating:3.0/5.0
Slides: 51
Provided by: mana
Category:

less

Transcript and Presenter's Notes

Title: Macroeconomic VS' CGE Models


1
Macroeconomic VS. CGE Models
  • CGE models incorporate production at a level
    of aggregation that permits the analysis of
  • structural change and also captures the
    essential transmission mechanism of production,
  • demand, and trade. They also incorporate
    market mechanisms and policy instruments that
  • work through price incentives. Therefore,
    resource allocation theory is always the
  • fundamental framework of analysis.
  • In contrast to macroeconomic models which are
    often difficult to trace the causal
  • mechanisms at work, the mechanisms driving
    CGE models are clear and easy to grasp
  • because their structure is rooted in received
    theory. Many economists believe that
  • transparency is a key characteristic that an
    empirical general equilibrium model must have
  • if it is to provide a framework for policy
    analysis.
  • Empirical general equilibrium models that can
    be solved numerically are thus useful
  • to provide a bridge between the theorist, the
    planner and the practical policy maker.

2
Macroeconomic VS. CGE Models
  • Consider, for example, a disagreement about the
    appropriateness of a major
  • devaluation in a country facing a foreign
    shortage. Is the problem more
  • macroeconomic, with the price level seen
    tied to the exchange rate by strong
  • cost-push factors that make a real devaluation
    impossible? Or, is the whole
  • problem that the opposition to exchange-rate
    adjustment is based on income
  • distribution consideration? What is needed is an
    economy-wide framework that
  • permits an explicit specification of an
    economys operation where each of these
  • views can be evaluated.
  • Based on macroeconomic model, the central focus
    of analysis include the level
  • of foreign debt, inflation, government revenue,
    the aggregate level of economic
  • activity, unemployment, and perhaps the
    distribution of income to broadly
  • defined factors of production (labor, capital).

3
Macroeconomic VS. CGE Models
  • Most countries today, however, work within the
    environment of a mixed
  • economy in which the market plays a central
    role. The exchange rate, taxes,
  • tariffs, subsidies and other policy variables
    that affect relative prices and
  • incentives through the market mechanism have
    become important. It is crucial
  • to understand how incentive policies affect the
    allocation of resources and the
  • structure of growth by using the general
    equilibrium model.
  • Wages, prices, and the exchange rate are viewed
    not in terms of their impact on
  • the aggregate flow of funds and the various
    macro balances, but in terms of
  • their impact on relative factor returns
    across sectors and by type of factor (labor
  • by skill and sector, capital by sector,
    etc.)

4
Normal Step in CGE Modeling
  • 1. Specify dimensions of the model
  • No. of goods and factors, consumers, countries,
    and active markets
  • 2. Select functional forms for production
    (Leontief, Cobb-Douglas, or CES), transformation,
    and utility functions
  • 3. Construct micro-consistent dataset
  • Data satisfy zero profit conditions for each
    activity (e.g., perfectly competitive market)
  • Data satisfy market clearing conditions
  • The initial data for this economy is SAM
  • 4. Initialization and Calibration
  • Parameters are chosen such that functional forms
    and data are consistent.
  • 5. Replication
  • Once all the parameters are specified, the model
    is solved to reproduce the benchmark data.
  • 6. Counter-factual experiments

5
Structure of the Model
6
?????????????????????????????????????????
7
Demand for Primary and Intermediate Inputs
8
Demand for Domestic and Export Commodities
9
Demand for Final Consumption
10
Equations for Normal Profit Conditions
11
Equations for Equilibrium in the Economy
12
Equations for Income and Expenditure of
Households and Government
13
Models Initialization and Calibration
  • Initialization assigning the base value to each
    variable before solving for the base-case
    solution. Most values for initialization are
    obtained from SAM table. However, some values,
    particularly those of parameters in production
    equations, are computed by using calibration
    technique.
  • Before doing initialization and calibration, you
    need to know the location on the SAM table
    containing the values related to each equation in
    your model.

14
Models Initialization and Calibration
  • Production Block
  • Assign the value of 1 to PD, PE, PM, PQ and PX.
  • On SAM table, locate cell containing the value of
    PDD, PEE, PMM, PQQ, PXX. Dividing those
    values by PD, PE, PM, PQ and PX to obtain the
    value of D, E, M, Q and X.
  • Now we need to apply the Calibration technique to
    compute the value of at, aq, bt and bq

(Eq. 1) Production Function (TotalProd)
(Eq. 2) CET Transformation (CETEQ)
(Eq. 3) ARMINGTON Composite Supply (ARMING)
15
Models Initialization and Calibration
  • (4) There are 3 steps in calibration.
  • Step (4.1) - Elasticity parameter (?) Mostly
    obtained from using econometric method (e.g. OLS,
    GLS, ML).
  • Step (4.2) - Parameter of input share (b)
    Computed by using the re-arranging equation of
    price ratio. For example, we re-arrange the E/D
    ratio equation to calculate the value of bt
  • Step (4.2) - Parameter of input share (a)
    Computed by using the re-arranging the production
    function. In this example, the CET equation is
    re-arranged, enabling us to obtain the value of
    at.

Assign to value of elasticity parameter (?)
Compute the share parameter (b)
Compute the technology parameter (a)
(Eq. 10) E/D Ratio (EDRAT)
(Eq. 2) CET Transformation (CETEQ)
16
Models Closure Rule
  • Typically, the models leave 3 sets of
    variables for closure rule.
  • (1) Savings Investment Balance
  • Option 1 Saving is investment driven
    Option 2 Investment is saving
    driven
  • Investment variable
    fixed Investment
    variable free
  • Saving rate free

    Saving rate fixed
  • (2) Exchange rate and Foreign Savings
  • Option 1 Exchange rate is floated
    Option 2 Exchange rate is
    fixed
  • Exchange rate
    free
    Exchange rate fixed
  • Foreign saving
    fixed
    Foreign saving free
  • (3) Factor Markets
  • Capital market
    Labor Market
  • Option 1 Capital is mobile and fully
    employed Option 1 Labor is mobile and fully
    employed
  • WFDIST(cap)
    fixed
    WFDIST(labor) fixed
  • WF(cap) free
    WF(labor) free
  • QF(cap) free
    QF(labor) free
  • QFS(cap)
    fixed QFS(labor) fixed

17
Modeling Techniques and Concerns
  • Technique Construct the initialization and
    calibration by automatically obtaining initial
    value from SAM.
  • Concerns There are indicators for checking the
    correctness of model
  • (1) WALRAS is zero
  • (2) SAM is balanced
  • (3) Base-cases solution is identical to the
    original data
  • However, obtaining the base-case solution
    satisfying these 3 conditions does not guarantee
    that your model is correct.

18
Social Accounting Matrix (SAM)
  • A SAM is a square matrix that builds on the
    input-output table, but it goes
  • further.
  • A SAM considers not only production linkages,
    but also concerns on income-
  • expenditure (institutions are introduced).
  • A SAM is consistent data system that provides a
    static image or a snapshot of
  • the economy.

19
Accounts of the 2005 SAM for Thailand
  • (1) Labor (2) Capital
  • (3) ??????? 42 sectors (4)
    Domestic Commodity 42 sectors
  • (5) Foreign Commodity 42 sectors (6) Trade and
    Transport Margin (TTM)
  • (7) Direct Taxes (8) VAT
  • (9) Excise Taxes (10) Import Duties
  • (11)Other Indirect taxes. (12) Subsidies
  • (13) Household 5 groups (14) Government
  • (15) Private Enterprise/State Enterprise
  • (16) The Rest of The World (ROW)
  • (17) Capital Account (KA)

20
A GAMS Tutorial
  • Structure of a GAMS model
  • Sets
  • Data
  • Variables
  • Equations
  • Objective functions
  • Model and solve statements
  • Display statements
  • The .lo, .l, .up, .m database
  • GAMS output

21
Structure of a GAMS Model
22
Example GAMS representation of the transport
problem
  • Given 1) supplies at several plants and demands
    at several markets for a single
  • commodity
  • 2) unit costs of shipping the
    commodity from plants to markets
  • Question how much shipment should there be
    between each plant and each market
  • so as to minimize total
    transport cost?
  • Indices i plants, j markets
  • Given data

23
Example (Continued)
24
Sets
  • Sets
  • i canning plants / seattle, san-diego /
  • j markets / new-york, chicago, topeka /
  • i Seattle, San Diego
  • j New York, Chicago, Topeka.
  • Set i canning plants / seattle, san-diego /
  • Set j markets / new-york, chicago, topeka /
  • Set t time periods /19912000/
  • Set m machines /mach1mach24/
  • t 1991,1992,1993, ....., 2000
  • m mach1, mach2,......, mach24,
  • Alias statement
  • Alias (t,tp)

25
Data
  • Data entry by list
  • Parameters
  • a (i) capacity of plant i in cases
  • / seattle 350
  • san-diego 600 /
  • b (j) demand at market j in cases
  • / new-york 325
  • chicago 300
  • topeka 275 /
  • Data entry by table
  • Table d (i, j) distance in thousands of miles
  • new-york chicago topeka
  • seattle 2.5 1.7
    1.8
  • san-diego 2.5 1.8
    1.4
  • Data entry by direct assignment
  • Parameter c (i, j) transport cost in
    thousands of dollars per case
  • c (i, j) f d (i,
    j) / 1000

26
Variables
  • Variable

    x (i, j)
    shipment quantities in cases z total
    transportation costs in thousands of dollars
  • Once declared, every variable must be assigned a
    type. The permissible types are
  • free (default), positive, negative, binary, and
    integer.
  • The variable that serves as the quantity to be
    optimized must be a scalar and must
  • be of the free type. In our example, z is kept
    free by default, but x (i, j) is constrained
  • to non-negativity by the following
    statement.
  • Positive variable x

27
Equations
  • Equation Declaration
  • Equations
  • cost define objective function
  • supply (i) observe supply limit at plant i
  • demand (j) satisfy demand at market j
  • GAMS summation notation

28
Equations (Continued)
  • The dollar condition
  • a(b gt 1.5) 2 is equivalent to if (b gt 1.5),
    then a 2
  • dollar on the left no assignment is made unless
    the logical condition is satisfied.
  • rho(i) (sig(i) ne 0) (1./ sig (i) ) 1.
  • rho(i) sig (i) (1./sig (i) )
    1.
  • dollar on the right an assignment is always
    made.
  • x 2 (y gt 1.5) is equivalent to
    if (y gt 1.5) then (x 2), else (x 0)
  • or it can be re-written with an
    explicit if-then-else as
  • x 2 (y gt 1.5) 0.5 (y le 1.5)

29
Equation Definition
  • The name of the equation being defined
  • The domain
  • Domain restriction condition (optional)
  • The symbol , ,
  • Left-hand-side expression
  • Relational operator l, e, or g
  • Right-hand-side expression
  • Example
  • cost .. z e sum ( (i, j), c (i, j) x (i, j)
    )
  • supply (i) .. sum (j, x (i, j) ) l a (i)
  • demand (j) .. sum (i, x (i, j) ) g b (j)

30
Objective Function
  • To specify the function to be optimized, you must
    create a variable, which
  • is free (unconstrained in sign) and
    scalar-valued (has no domain) and which
  • appears in an equation definition that equates
    it to the objective function.

Model and Solve Statements
  • model transport /all/
  • model transport / cost, supply, demand/
  • solve transport using lp minimizing z
  • The format of the solve statement is as follows
  • 1. The key word solve
  • 2. The name of the model to be solve
  • 3. The key word using

31
Model and Solve Statements (Continued)
  • 4. An available solution procedure. For
    instance,
  • lp for linear programming
  • nlp for nonlinear programming
  • 5. The keyword minimizing or maximizing
  • 6. The name of the variable to be optimized

Display Statements
  • display x.l, x.m

The .lo, .l, .up, .m database
  • .lo lower bound
  • .l level or primal value
  • .up upper bound
  • .m marginal value or dual value

32
The .lo, .l, .up, .m database (continued)

Assignment of variable bounds and/or initial
values
x.up (i, j) capacity (i, j)
x.lo (i, j) 10.0 x.up
(seattle, new-york) 1.2 capacity
(seattle, new-york) These statements
must appear after the variable declaration and
before the Solve statement Transformation and
display of optimal values After the
optimizer is called via the solve statement, the
values it computes for the primal and dual
variables are placed in the database in the .l
and .m fields. We can read these results and
transform and display them with GAMS statements.
parameter pctx (i, j) percentage of market
js demand filled by plant i pctx (i, j)
100.0 x.l (i, j) / b (j) display pctx

33
Introduction for the Stochastic CGE Model
  • CGE modeling has become a popular tool to
    examine the economy-wide impacts of economic
    policies, but uncertainty about the values to
    assign to parameters can be a major limitation.
  • In most cases, there are no econometric
    estimates of the majority of model parameters.
  • The usual procedure is to do the models
    sensitivity by varying one parameter at a time,
    while keeping others at their base values.
  • However, this procedure ignores the possibility
    that two or more parameters could act in
    combination to yield unusual or unexpected
    results
  • The objective of this study is, therefore, to
    investigate the role of parameter uncertainty in
    the model by performing the Monte Carlo analysis.

34
Monte Carlo Analysis
  • In this analysis, the variability and uncertainty
    of each input parameter is represented by a
    frequency distribution.
  • The user needs to provide the distribution type
    along with the mean, standard deviation and
    minimum and maximum values of each input
    parameter.
  • Base on the frequency distribution of the input
    parameters, the Monte Carlo simulation selects a
    randomly generated input data set and calculates
    the corresponding output.
  • Then, a new input data set is generated at
    random, and the corresponding new output is
    calculated. This process is repeated until the
    statistical distribution of the model output
    reaches a stable state.

35
Example Monte Carlo Simulation
36
????????????????? Stochastic CGE
  • ??????????????????????????????????????????????????
    ??? CGE

CES
CET
CES
CES
CES
37
????????????????? Stochastic CGE
  • ??????????????????????????????????????????????????
    ??????????????????????
  • ???????????? ???? Armington elasticity
    ???????????????????????? ???????????????
  • ????????????????????????????????????? ???????
    ??????????????????????????
  • ???????? ????????????????????????????? (degree
    of substitution) ?????????????
  • ????????? ???????????????????????????????????????
    ?????????????????????????
  • ????????????
  • ??????????????????????????????????????????????????
    ???????????? ??????????
  • ?????????????? ??????????????????????????????????
    ??????????????????????????
  • ?????????????????????????? ???????
    ???????????????????????????????????
  • ??????? ?????????????????????????????????????????
    ????? ?????????????????????
  • ?????????????????????????????????????????????????
    ??????

38
????????????????? Stochastic CGE
  • ??????????????????????? Monte Carlo Simulation
    ?????????? stochastic CGE
  • ????????????? ????????????????????? ???????
    ?????????????????????????? ???????????????????????
    ?????????????? (normal distribution)
    ????????????????????????????????? ??????? 50
    ?????
  • ?????? Monte Carlo ????????????????????????????
    ? ? ???????? ?????????????????????????????????????
    ??? ? ???? mean ??? standard deviation
    ????????????????????????????? (distribution of
    results) ????????????? ? ??????????
  • ??????? ???????????????????????????????????????
    ? ??????

39
????????????????? Stochastic CGE

40
??????????????????????
  • ????????? ???????????????????????????????????????
    ??? ???????????????????????????????????? 2.50
  • ?????????????????????????????????? 3 ??????????
    ??????
  • ???????????????????????????? Deterministic CGE
  • ????????????????????????? Sensitivity Analysis
  • ????????????????????????? Monte Carlo Simulation
    ??
  • ???????? Stochastic CGE

41
??????????????????????
  • ????????????????????????????? Deterministic CGE
  • Real GDP ?????????????? 0.1
  • ??????????? Exports ???????????? 0.74
  • ??? Imports ??????? 1.43

42
??????????????????????
  • ?????????????????????????????????? Deterministic
    CGE
  • 1) ???????????????????????? 2.5 ?????
    ??????????????????????????????????????
  • ???????????? ???????????????????????????????
    ????????????? ???????????????
  • ???? ? ???????????????? 0.86 0.74 ??? 0.58
    ???????? ????????????????????????????
  • ??????????????????????
  • 2) ????????????? ?????????????????????????????????
    ???????????????????????
  • ???????? ????????????? ??????????????????? ?
    ??????????? 1.40 1.31 ???
  • 1.97 ???????? ???????????????????????????????????
    ??????????????????????????????
  • 3) ???????????????????????????????????????????????
    ??????????????????????????????
  • ????????????????? ????????????????????????????????
    ??????????????????????? ??
  • ??????????????????????????????????????????????????
    ?? ?????????? ????????????
  • ???? ? ???? 0.03 0.20 ??? 0.29 ????????
  • 4) ???????????????????????????????????????????????
    ?? ??????????????????????
  • ??????????????????? ????????????????????????????
    0.05 ??? 0.16 ????????

43
??????????????????????
  • ???????????????? Sensitivity Analysis
    ??????????????????????????????????????????????????
    ????????????????????????????
  • ?????????????????????????????? 25 ??? 50
    ??????????????? ??????????????????
  • ?????????????????????????????????????????????????
    ????????? ????????????????????????
  • ?????????????????????????????????????????????????
    ????????????? ???????????????
  • ?????????????????????????????????????????????????
    ??????????????? ?????????????
  • ??????????????????????????? real GDP
    ???????????????????????????????????????????
  • aggregate demand ????????????
  • ???????????? ?????????? ??????????????????????????
    ???? 50 ???????????????
  • ????????????????????????????????? -1.40 ????
    -1.51 ???????????????????
  • ????????????????????? 1.10 ???? 1.32
    ?????????????????????????????????????????? -
  • -0.03 ???? 0.03 ???????????????????????????????
    ??????? 0.05 ???? 0.09
  • ???????
  • ???????????? ????????????????????????
    ????????????????????????????

44
??????????????????????
  • ???????????????? Sensitivity Analysis
    ??????????????????????????????????????????????????
    ???????????????
  • ?????????????????????????????? 25 ??? 50
    ??????????????? ?????????????????
  • ?????????????????????????????????????????
    ???????????????????????????????????? ??? Real GDP
  • ???????????? ??????????????? ?????????????????????
    ????????? 50 ????????????
  • ??? ?????????????????????????????????????? 0.74
    ???? 0.81 ??????????????
  • ?????????????????? 0.16 ???? 0.19 ??? Real GDP
    ???????????? 0.10 ???? 0.15
  • ???????
  • ???????????? ????????????????????????
    ????????????????????????????

45
??????????????????????
  • ???????????????? Monte Carlo Simulation
    ?????????? Stochastic CGE

?????????????????????????????????????????????????
??????????????????????
46
??????????????????????
???????????????? Monte Carlo Simulation
?????????? Stochastic CGE
  • ?????????????????????????? (distribution
    property) ???????? Monte
  • Carlo Simulation ?????????????????????
    ?????????????????????????????? (the
  • most volatile variable) ?????????
    ??????????????????????????????? (volatility)
  • ?????????????????????????????????????????????????
    ?????????????? ?????????
  • ????????????????????????? ???????????????????
    (degree of volatility) ??????????????? percentage
    of standard deviation per mean
  • ??????????????????????????? ???????????
    ?????????????????????????????
  • ????????????????????? ????????
    ???????????????????? ???????????????????
  • ???????? ?????????????????????
    ????????????????????????????????????????
  • ???????? ?????????????????????????
    ??????????????????? ???????? ?????????
  • ?????????????????????????????????????????????????
    ????????????????????????
  • ????????????????

47
??????????????????????
???????????????? Monte Carlo Simulation
???????????????????????
48
??????????????????????
???????????????? Monte Carlo Simulation
?????????? Stochastic CGE
  • ????????? ????? Monte Carlo Simulation
    ?????????????????????????????????????
  • ????????????????????????????????????
    ???????????? ???????????????????????????
  • ???????????????????????????? ?????? crude oil
    and coal (????????????? 4 ??? S.D./Mean
  • ??????? 0.24) unclassified (????????????? 42
    ??? S.D./Mean ??????? 0.15) other
  • transportation (????????????? 32 ??? S.D./Mean
    ??????? 0.14) ??????? ????????????
  • ????????? crude oil and coal ????? S.D./Mean
    ??????? 0.03 unclassified ???????????? 0.02 ???
    other transportation ???????????? 0.02
  • ???????? ???????????????????????????????????? ???
    ??????????????????????????? ??????
  • ??????????? ? ????? S.D./Mean ??????????? 0.52
    ??? 0.046 ?????????????????????????????
  • ?????????????????????????????????????
  • ??????????????????????????? ????? Nominal GDP
    Real GDP ??? GDP deflator ?????
  • S.D./Mean ??????? 0.04 0.03 ??? 0.03 ????????

49
??????????????????????
???????????????? Monte Carlo Simulation
?????????? Stochastic CGE
  • ???????? Stochastic CGE ???????????????????????
    degree of volatility ????
  • ?????????????????????????????????????????????????
    ?????????????????????
  • ?????????? ? (shock) ????????????????????????????
    ?????????? ????????????
  • ?????????????????????????? (distribution of
    results) ?????????????????????
  • ????????????????????????????? ?
    ???????????????????????????? ????????????????
  • ?????????????????? CGE ??? deterministic
    ??????????????????????????????????
  • ?????

50
??????????????????????
???????????????????????? Monte Carlo Simulation
???????????????????????
Write a Comment
User Comments (0)
About PowerShow.com