April 03, 2006 - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

April 03, 2006

Description:

Mylar splitter two detectors (pyro & diode?) Add camera. LCLS BLM utilizing coherent radiation ... Mylar splitter. April 03, 2006. BIG Meeting. Juhao Wu. jhwu ... – PowerPoint PPT presentation

Number of Views:19
Avg rating:3.0/5.0
Slides: 30
Provided by: jhwu
Category:
Tags: april | splitter

less

Transcript and Presenter's Notes

Title: April 03, 2006


1
LCLS bunch length monitor utilizing coherent
radiation
Juhao Wu, Apr. 03, 2006
  • Purpose of this study
  • Current status
  • What to improve

2
LCLS BLM utilizing coherent radiation
  • LCLS feedback system schematic

BPM
BLM
  • Observables (6)
  • Energy E0 (at DL1), E1 (at BC1), E2 (at BC2),
    E3 (at DL2)
  • Coherent Radiation energy bunch
    length ?z,1 (at BC1), ?z,2 (at BC2)
  • Controllables (6)
  • Voltage V0 (in L0), V1 (in L1), V2
    (effectively, in L2)
  • Phase ?1 (in L1), ?2 (in L2 ), ?3 (in L3)

3
LCLS BLM utilizing coherent radiation
  • Coherent Radiation (CR) as nondestructive
    diagnostic tool
  • Synchrotron (magnet), Edge, and Diffraction
    Radiation
  • For a group of Ne electrons
  • CR spectrum
  • Form factor ? bunch length information

Single e-
thin beam approximation
4
LCLS BLM utilizing coherent radiation
  • Let us start with ideal calculation
  • ISR power spectrum from a bending magnet
  • Far field, infinite long bending magnet
  • For an azimuthal milliradian of the electron
    orbit (?) and integrated over all the vertical
    angles

5
LCLS BLM utilizing coherent radiation
  • Parameters at BC1 and BC2

Q (nC) ? (m) ?z (mm) ? (mm) f (THz)
BC1 1 2.3 0.2 1.2 0.24
BC1 0.2 2.2 0.06 0.38 0.80
BC2 1 14 0.02 0.12 2.4
BC2 0.2 17 0.008 0.05 6.0
  • CSR pulse energy can be as much as ?J

6
LCLS BLM utilizing coherent radiation
  • Phase jitter affects CSR spectrum after BC1
  • Density distribution parabolic

Black Nominal Blue ??1 2.1o Red ??1
- 2.1o
7
LCLS BLM utilizing coherent radiation
  • Wake-induced double-horn structure after BC2

With Laser-Heater ( )
8
LCLS BLM utilizing coherent radiation
  • Sharp-edge induces high freq. component after
    BC2.
  • However, low freq. region independent of shape

Black double-horn Blue Gaussian with same
Red Step with same
Non-Gaussian? Fine ? low freq. region
9
LCLS BLM utilizing coherent radiation
  • Stay in the low frequency regime
  • Pyroelectric detector, diode detector?
  • Detector with fixed ??, the integrated power
  • Gaussian density distribution
  • Detected power

10
LCLS BLM utilizing coherent radiation
  • Low charge case (0.2 nC) at BC1

Diode WD 03
Pyro PI 45
X0.3
X0.9
X3
X1
exp(- x2)
X ? 2 p sz / l
X ? (0.3,1.4)
X
11
LCLS BLM utilizing coherent radiation
  • So much for the ideal calculation
  • Let us now study the real experimental setup
  • Near-field, far-field
  • Finite magnet length
  • Edge radiation
  • Diffraction radiation
  • Finite aperture

12
LCLS BLM utilizing coherent radiation
  • UCLA design

13
LCLS BLM utilizing coherent radiation
  • UCLA design

14
LCLS BLM utilizing coherent radiation
  • SLAC modification
  • No turret
  • Diamond ? quartz
  • Mylar splitter ? two detectors (pyro diode?)
  • Add camera

Mylar splitter
quartz
15
LCLS BLM utilizing coherent radiation
  • Schematic plan view
  • Aperture allows CSR to couple out
  • Mirror with hole collects arc of 1.7 to 5

detector
4.0 in.
20 in
QM12
1.5 in.
e-
3.0 in.
0.6 in.
5
3.3 in.
6.3 in.
10.0 in.
12.7 in.
16
LCLS BLM utilizing coherent radiation
  • Schematic optics setup

To detector
CSR
CDR
Bending Magnet
CER
e-bunch
CER
CSR
Reflecting / focusing mirror with hole
17
LCLS BLM utilizing coherent radiation
  • Edge Radiation (ER)
  • Zero-edge length model
  • For ? gtgt1, radially polarized
  • Photon flux per unit solid angle ( in photons /
    s-relative bandwidth ??/?-steradian)

R.A. Bosch, Il Nuovo Cimento, 20, 483(1998)
18
Far field near field
LCLS BLM utilizing coherent radiation
19
Far field near field
LCLS BLM utilizing coherent radiation
? (m) ?z (mm) ? (mm) E (GeV) ??2 (m) R(?/R)1/2(cm)
BC1 2.4 0.19 1.2 0.25 286 1.7
BC2 14.5 0.021 0.13 4.3 9,343 0.6
  • In Near field regime
  • R 25 cm
  • Reflecting part aperture 0.8 cm gt ?? 1.7o
  • Reflecting part is 3.8 cm off-axis gt ? 8.5o
  • Will capture the peak of ER
  • SR interferes with ER

R
R sin(?)
?
D?
20
LCLS BLM utilizing coherent radiation
  • Possible situation

3rd bend
4th bend
CER
Mirror
CSR
CER from 4 edges, and CSR from 2 arcs
21
LCLS BLM utilizing coherent radiation
  • Evolution of RMS Bunch Length Through BC1
  • CSR from B4
  • CER from B4 and B3 (with proper bunch length)

B4
B1
B2
B3
constant 200-mm rms bunch length through final
bend
22
LCLS BLM utilizing coherent radiation
  • Response function
  • Signal detection
  • Diode detector
  • Pyrodetector

100 (mm)
0.1
1
10
23
LCLS BLM utilizing coherent radiation
  • CER Calculate E-field at four edges, sum up with
    proper phase difference? then power
  • Do not calculate interference between CSR and CER
  • Diode WD 06 detector

CSR (green) CER (red)
The black solid curve is simply the sum
24
LCLS BLM utilizing coherent radiation
  • Diffraction radiation concentrates for

a
R
? (mm) ? ? ? (m)
BC1 1.2 489.2 0.59
BC2 0.13 8414.9 1.1
25
LCLS BLM utilizing coherent radiation
  • Transition Radiation
  • Infinite Plate
  • Finite Plate

S. Reiche et al., PAC2001, p. 1282
26
LCLS BLM utilizing coherent radiation
  • Diffraction Radiation Finite Plate with Hole

Y. Shibata et al., Phys. Rev. E 52, p. 6787
(1995)
27
LCLS BLM utilizing coherent radiation
  • Coherent Diffraction Radiation
  • Diode WD-06 detector

CDR
?
? ? ( 0.010.020.050.20.5 )
28
LCLS BLM utilizing coherent radiation
  • Signal strength (at birth)
  • Ceramic gap (optical diffraction model)

aperture ?z (mm) Qb (C) Erad (mJ)
SLC 5 2 5 0.75
LCLS 5 0.2 1 0.1
gt100
  • CR

29
LCLS BLM utilizing coherent radiation
  • Current mechanical design would collect CER, CDR
    along with CSR
  • Further improvement
  • CSR near-field, far-field calculation
  • O. Chubar and P. Elleaume ? Synchrotron Radiation
    Workshop
  • Power loss on the mirror
  • Reflectivity p-polarization, and s-polarization
  • Transmission of the system in general
Write a Comment
User Comments (0)
About PowerShow.com