TOPIC : 2'0 TRIGONOMETRIC FUNCTIONS SUBTOPIC : 2'2 Trigonometric Ratios and Identities

1 / 34
About This Presentation
Title:

TOPIC : 2'0 TRIGONOMETRIC FUNCTIONS SUBTOPIC : 2'2 Trigonometric Ratios and Identities

Description:

For any acute angle , there are six trigonometric ratios, ... Isosceles triangle. sin 450 = cos 450 = tan 450 = 1. 450. 450. 1. 1. 34. 33. 32. 31. 30. 29. 28 ... –

Number of Views:182
Avg rating:3.0/5.0
Slides: 35
Provided by: nura2
Category:

less

Transcript and Presenter's Notes

Title: TOPIC : 2'0 TRIGONOMETRIC FUNCTIONS SUBTOPIC : 2'2 Trigonometric Ratios and Identities


1
2.2 Trigonometric Ratios and Identities
2
Generally the diagram above can be formulated as
the diagram below
Q
3
2.2a Trigonometric Ratios of sin ,cos , tan
, cosec ,sec and cot
?
?
?
?
?
?
4

For any acute angle ?, there are six
trigonometric ratios, each of which is defined by
referring to a right angled triangle containing
?.
From the diagram
?
900-
5
From the diagram


6

Example 1

If , and is an acute angle,
find sec and
?
Solution
5
4
?
3
7
Example 2 Given cos x 0.8, evaluate 5 sin x
3 tan x 3 cosec x.
Solution
8
Example 3 Given ,
find a)
Solution


9
(No Transcript)
10
2.2 b Relationship of sin ?, cos ? and tan ?
11
900 - ?
z
y
?
Therefore sin (900 -
?) cos ?
x
12
  • b) cos (900 - ?) sin ?
  • Therefore
  • cos (900 - ?) sin ?

cot ?
c) tan (900 - ?)

Therefore tan (900 - ?)
cot ?
13
2.2 c Trigonometric Ratios of Particular Angles
14
Equilateral triangle of sides 2 unit in length


15
Isosceles triangle
16
The values of trigonometric ratio for some
particular angles are as follows
17
  • Example 1
  • Prove that

Solution
18
Example 2Prove thatsec 300 tan 600 sin 450
cosec 450 cos 300 cot 600
Solution
19
2.2 d Trigonometric Ratio for Any Angle

20
i) Positive Angle
First Quadrant

21
Second Quadrant
sin (1800-?) sin ? cos (1800-?) - cos
? tan (1800-?) - tan ?

x
Third Quadrant
22
Fourth Quadrant
We can summarize that all the trigonometric
ratios are positive in the first quadrant, sine
is positive in second quadrant, tangent is
positive in the third quadrant and cosine is
positive in the fourth quadrant as shown below.







23
ii) Negative Angle
  • The rotating arm will describe a negative angle
    if it rotates in a clock wise direction. To
    convert a negative angle to a normal basic angle,
    add 3600 or a multiple of 3600. The value of a
    trigonometrical ratio
  • of any negative angle can then be found.

Example An angle of - 400 is equivalent to a
basic angle of - 400 3600 3200. sin
(-400) sin (3200) - sin (3600-3200) - sin 400
cos (-400) cos (3200) cos
(3600-3200) cos 400 tan (-400) tan
(3200) - tan (3600-3200) - tan 400
Then
Hence in general sin (-?) -sin ? cos (-?)
cos ? tan (-?) -tan ?
24
  • Example 1
  • State the trigonometric ratio in acute angle.
  • a) sin 1600 b) cos 2200 c)
    tan 3100
  • d) cos 1720 e) tan 2460

Solution a) sin 1600
b) cos 2200 sin (1800 200)
cos (1800
400) sin 200
- cos 400 c) tan 3100
d) cos 1720
tan (3600 500)
cos (1800 80) - tan 500
- cos 80
e) tan 2460 tan (1800 660)
tan 660
25
  • Example 2
  • State the trigonometric ratio in acute angle
  • a) sin (-250) b) cos (-400)
    c) tan (-480)
  • d) sin (-1280) e) cos (-1520)
    f) tan (-1630)

26
  • d) sin (-1280)
  • - sin 520
  • e) cos (-1520)
  • - cos 280

1280
f) tan (-1630) - tan 170
27
  • Example 3
  • Find the following
  • a)sin 1200 b) cos 2100
    c) tan 2250
  • d) tan (-1200) e) sin (-1350)
    f) cos (-2700)

28
2.2 e Trigonometric Identities
For any position of OP a right angled can be
drawn for which,
x2
y2 OP2 r2
29
  • Dividing through by r2 becomes
  • Since
  • cos and
  • Therefore
  • cos2 ? sin2 ? 1

1
  • Dividing through by x2 becomes
  • 1


Since
and
Therefore 1 tan2 ? sec2 ?
30
  • Dividing through by y2 becomes
  • Since and
  • Therefore
  • cot2 ? 1
    cosec 2 ?

31
  • Useful formulae and identities are summarized in
    the following diagram.The diagonals show the
    reciprocals of the various trigonometric
    ratios
  • The shaded triangles show the three basic
    identities. The sum of the square of the two
    bases is equal to the square of the downward
    vertex.
  • i.e sin2? cos2 1 ,1 tan2? sec2?,1 cot2?
    cosec2?



1

32
Example 1Prove the identity tan ? cot ? sec
? cosec?
  • Solution
  • LHS tan ? cot ?

(since sin2 ? cos2 ? 1)
33
Example 2Prove the identity(1 sin ? cos ?
)2 2(1 sin ?)(1 cos ? )
Solution
  • LHS (1- sin ? cos ?)(1- sin ? cos ?)
  • 1-2 sin? 2 cos? sin2? cos2? 2
    sin?cos ?
  • 2 2 sin?2cos?2sin?cos? (since
    sin2?cos2?1)
  • 2 (1- sin? cos? sin? cos?)
  • 2 (1- sin? )(1 cos? ) RHS

34
Example 3Prove the identity
  • Solution
Write a Comment
User Comments (0)
About PowerShow.com