Title: Atomistic Simulation of Carbon Nanotube FETs
1Atomistic Simulation of Carbon Nanotube
FETs Using Non-Equilibrium Greens Function
Formalism
Jing Guo1, Supriyo Datta2, M P Anantram3, and
Mark Lundstrom2 1Department of ECE, University
of Florida, Gainesville, FL 2School of ECE,
Purdue University, West Lafayette, IN 3NASA Ames
Research Center, Moffett Field, CA
- Introduction
- NEGF Formalism
- Ballistic CNTFETs
- Summary
2Introduction carbon nanotubes
McEuen et al., IEEE Trans. Nanotech., 1 , 78,
2002.
(see also R. Saito, G. Dresselhaus, and M.S.
Dresselhaus, Physical Properties of Carbon
Nanotubes, Imperial College Press, London, 1998.)
3Introduction device performance
VG0.2V
nanotube diameter 1.7 nm
-0.1 V
-0.4 V
-0.7 V
-1.0 V
-1.3 V
tube d 1.7 nm
( W 2d )
Javey, Guo, Farmer, Wang, Yenilmez, Gordon.
Lundstrom, and Dai, Nano Lett., 2004
4Outline
- Introduction
- NEGF Formalism
- Ballistic CNTFETs
- Summary
5Nonequilibrium Greens Function (NEGF)
Charge density (ballistic)
Current
Datta, Electronic Transport in Mesoscopic
Systems, Cambridge, 1995
6Outline
- Introduction
- NEGF Formalism
- Ballistic CNTFETs
- Summary
7CNTFETs real-space basis (ballistic)
SS
H
SD
(m, 0) CNT
Recursive algorithm for Gr O(m3N) Lake et al.,
JAP, 81, 7845, 1997
8CNTFETs real-space results
2nd subband
interference
band gap
Confined states
9CNTFETs mode-space approach (ballistic)
The qth mode
c
t
(m,0) CNT
- ?S (1,1) and ?D (N,N) analytically computed
- Computational cost O(N) real space O(m3N)
k
t
10CNTFETs mode-space results
coaxial G
dCNT1nm
i
n
n
coaxial G
2 modes
2 modes
coaxial G VD0.4V
real space
real space
coaxial G
band profile (ON)
11CNTFETs treatment of M/CNT contacts
M
band discontinuity
metallic tube band
Kienle et al, ab initio study of contacts in
progress
12CNTFETs treatment of M/CNT contacts
Gate
Metal S
metal D
tunneling
VDVG0.4V
Charge transfer in unit cell Leonard et al.,
APL, 81, 4835, 2002
13CNTFETs 3D Poisson solver
Method of moments
Electrostatic kernel
for 2 types of dielectrics available in
Jackson, Classical Electrodynamics, 1962
Neophytou, Guo, and Lundstrom, 3D
Electrostatics of CNTFETs, IWCE10
14CNTFETs numerical techniques
- Non-linear Poisson
- Recursive algorithm for
- Gaussian quadrature for doing integral
- Parallel different bias points
- 20min for full I-V of a 50-nm CNTFET
given n
---
gt
U
given n
---
gt
U
scf
scf
Poisson
Poisson
Iterate
Iterate
until
until
self
-
self
-
consistent
consistent
given
U
---
gt n
given
U
---
gt n
scf
scf
transport equation
NEGF
Transport
15CNTFETs theory vs. experiment
VD -0.3V
-0.2V
-0.1V
Javey, et al., Nano Letters, 4, 1319, 2004
G
?Bp0 dCNT 1.7nm RSRD1.7K?
16Summary
A simulator for ballistic CNTFETs is
developed - atomistic treatment of the CNT -
3D electrostatics - phenomenological treatment
of M/CNT contacts - efficient numerical
techniques Theory is calibrated to experiment