Title: Equilibration of non-extensive systems
1Equilibration of non-extensive systems
- T. S. Bíró and G. Purcsel
- MTA KFKI RMKI Budapest
- NEBE parton cascade
- Zeroth law for non-extensive rules
- Common distribution
- Extracting temperatures
Talk given at Varos Rab, Croatia, Aug.31-Sept.3
2007
2Thermodynamics
- Boltzmann Gibbs
- Extensive S(E,V,N)
- 0 an absolute temperature exists
- 1 energy is conserved
- 2 entropy does not decrease spontan.
- Tsallis and similar
- non-extensive
- 0 ???
- 1 (quasi) energy is conserved
- 2 entropy does not decrease
3NEBE parton cascade
Boltzmann equation
Special case Ep
4Energy composition rule
Associative rule ? mapping to addition
quasi-energy
Taylor expansion for small x,y and h
5Stationary distribution in NEBE
Gibbs of the additive quasi-energy Tsallis of
energy
Boltzmann-Gibbs in X(E) Generic
rule Quasi-energy Tsallis distribution
6Abilities of NEBE
- Tsallis distribution from any initial
distribution - Extensiv (Boltzmann-) entropy
- Particle collisions in 1, 2 or 3 dimensions
- Arbitrary free dispersion relation
- Pairing (hadronization) option
- Subsystem indexing
- Conserved N, X( E ) and P
7Boltzmann energy equilibration
8Tsallis energy equilibration
9Boltzmann distribution equilibration
10Tsallis distribution equilibration
11Mixed distribution equilibration
12Mixed distribution equilibration
13Thermodynamics general case
If LHS RHS thermal equilibrium, if same
function universal temperature
14Thermodynamics normal case
If LHS RHS thermal equilibrium, if same
function universal temperature
15Thermodynamics NEBE case
If LHS RHS thermal equilibrium, if same
function universal temperature
16Thermodynamics Tsallis case
Tsallis entropy S(E1,E2) S1 S2 (q-1) S1
S2 ? Y(S) additiv, Rényi
If LHS RHS thermal equilibrium, if same
function universal temperature
17Thermodynamics NEBE case
? 1 / T in NEBE the inverse log. slope is
linear in the energy
18Boltzmann temperature equilibration
T 0.50 GeV
T 0.32 GeV
T 0.14 GeV
19Tsallis temperature equilibration
T0.16 GeV, q1.3054
T0.12 GeV, q1.2388
T0.08 GeV, q1.1648
20Summary
- NEBE equilibrates non-extensive subsystems
- It is thermodynamically consistent
- There exists a universal temperature
- Not universal but equilibrates different T and a
systems (not different T and q systems
Nauenberg)