Equilibration of non-extensive systems - PowerPoint PPT Presentation

About This Presentation
Title:

Equilibration of non-extensive systems

Description:

Extensiv (Boltzmann-) entropy. Particle collisions in 1, 2 or 3 dimensions ... Tsallis entropy: S(E1,E2) = S1 S2 (q-1) S1 S2; Y(S) additiv, R nyi ... – PowerPoint PPT presentation

Number of Views:29
Avg rating:3.0/5.0
Slides: 21
Provided by: tsb38
Category:

less

Transcript and Presenter's Notes

Title: Equilibration of non-extensive systems


1
Equilibration of non-extensive systems
  • T. S. Bíró and G. Purcsel
  • MTA KFKI RMKI Budapest
  • NEBE parton cascade
  • Zeroth law for non-extensive rules
  • Common distribution
  • Extracting temperatures

Talk given at Varos Rab, Croatia, Aug.31-Sept.3
2007
2
Thermodynamics
  • Boltzmann Gibbs
  • Extensive S(E,V,N)
  • 0 an absolute temperature exists
  • 1 energy is conserved
  • 2 entropy does not decrease spontan.
  • Tsallis and similar
  • non-extensive
  • 0 ???
  • 1 (quasi) energy is conserved
  • 2 entropy does not decrease

3
NEBE parton cascade
Boltzmann equation
Special case Ep
4
Energy composition rule
Associative rule ? mapping to addition
quasi-energy
Taylor expansion for small x,y and h
5
Stationary distribution in NEBE
Gibbs of the additive quasi-energy Tsallis of
energy
Boltzmann-Gibbs in X(E) Generic
rule Quasi-energy Tsallis distribution
6
Abilities of NEBE
  • Tsallis distribution from any initial
    distribution
  • Extensiv (Boltzmann-) entropy
  • Particle collisions in 1, 2 or 3 dimensions
  • Arbitrary free dispersion relation
  • Pairing (hadronization) option
  • Subsystem indexing
  • Conserved N, X( E ) and P

7
Boltzmann energy equilibration
8
Tsallis energy equilibration
9
Boltzmann distribution equilibration
10
Tsallis distribution equilibration
11
Mixed distribution equilibration
12
Mixed distribution equilibration
13
Thermodynamics general case
If LHS RHS thermal equilibrium, if same
function universal temperature
14
Thermodynamics normal case
If LHS RHS thermal equilibrium, if same
function universal temperature
15
Thermodynamics NEBE case
If LHS RHS thermal equilibrium, if same
function universal temperature
16
Thermodynamics Tsallis case
Tsallis entropy S(E1,E2) S1 S2 (q-1) S1
S2 ? Y(S) additiv, Rényi
If LHS RHS thermal equilibrium, if same
function universal temperature
17
Thermodynamics NEBE case
? 1 / T in NEBE the inverse log. slope is
linear in the energy
18
Boltzmann temperature equilibration
T 0.50 GeV
T 0.32 GeV
T 0.14 GeV
19
Tsallis temperature equilibration
T0.16 GeV, q1.3054
T0.12 GeV, q1.2388
T0.08 GeV, q1.1648
20
Summary
  • NEBE equilibrates non-extensive subsystems
  • It is thermodynamically consistent
  • There exists a universal temperature
  • Not universal but equilibrates different T and a
    systems (not different T and q systems
    Nauenberg)
Write a Comment
User Comments (0)
About PowerShow.com