Electrochemistry - PowerPoint PPT Presentation

1 / 32
About This Presentation
Title:

Electrochemistry

Description:

Oxidation loss of one or more electron(s) oxidation state will increase ... Potential difference = EMF, electromotive force. Ecell = cell potential = cell voltage ... – PowerPoint PPT presentation

Number of Views:158
Avg rating:3.0/5.0
Slides: 33
Provided by: lindaw75
Category:

less

Transcript and Presenter's Notes

Title: Electrochemistry


1
Chapter 20
Electrochemistry
2
Overview
  • Oxidation-Reduction reactions
  • Balancing Redox Reactions
  • Half-Reaction method
  • Acidic Solution
  • Basic Solution
  • Voltaic Cells
  • Cell EMF--standard reduction potentials
  • Oxidizing Reducing reagents
  • Spontaneity of Redox reactions

3
  • Effect of Concentration
  • Nernst Equation
  • Equilibrium Constants
  • Commercial Voltaic Cells
  • Electrolysis
  • Quantitative Aspects
  • Electrical Work

4
Redox Reactions
  • Involve a transfer of electrons
  • Oxidation ? loss of one or more electron(s)
  • oxidation state will increase
  • Reduction ? gain of one or more electron(s)
  • oxidation state will decrease
  • Must occur simultaneously

Zn(s) Cu2(aq) ? Zn2(aq)
Cu(s)
Zn ? Zn2(aq) 2e-
oxidation ½ rxn
oxidation
Cu2(aq) 2e- ? Cu(s)
reduction
reduction ½ rxn
5
You must know oxidation states(Review Section
8.10)
  • What are the oxidation states of each atom in the
    following
  • H2
  • CO
  • ClO2-
  • HC2H3O2

H 0 C 2, O -2 Cl 3, O -2 H 1, C1
3, C2 -3, O -2
6
Balancing Redox Reactions
  • Mass balance must be observed
  • e--transfer must be balanced
  • Simple reactions
  • Sn2 Fe3 ? Sn4 Fe2
  • Sn2 ? Sn4 2e-
  • Fe3 e- ? Fe2

oxidation ½ rxn
reduction ½ rxn
x 2
2Fe3 2e- ? 2Fe2 Sn2 2Fe3 ?
Sn4 2Fe2
7
  • Reactions involving H O in acid
  • MnO4- C2O42- ? Mn2 CO2
  • write both ½ reactions
  • MnO4- ? Mn2
  • C2O42- ? CO2
  • mass balance (all except H O)
  • MnO4- ? Mn2
  • C2O42- ? 2CO2
  • add H2O H to balance O H
  • 8H MnO4- ? Mn2 4H2O
  • C2O42- ? 2CO2

8
  • balance charge by adding electrons
  • 5e- 8H MnO4- ? Mn2 4H2O
  • C2O42- ? 2CO2 2e-
  • balance electrons transferred
  • 10e- 16H 2MnO4- ? 2Mn2
    8H2O
  • 5C2O42- ? 10CO2 10e-
  • add half reactions
  • 16H 2MnO4- 5C2O42- ? 10CO2 2Mn2
    8H2O
  • check the balance

9
  • Reactions in base MnO4- CN- ? CNO-
    MnO2
  • use exactly the same process
  • CN- ? CNO-
  • MnO4- ? MnO2

H2O
2H
2e-
3e-
2H2O
4H
  • since H cannot exist in basic solution, add OH-
  • 2OH- CN- ? CNO- H2O 2e-
  • 3e- 2H2O MnO4- ? MnO2 4OH-
  • balance electrons transferred sum
  • 6OH- 3CN- ? 3CNO- 3H2O 6e-
  • 6e- 4H2O 2MnO4- ? 2MnO2 8OH-
  • 3CN- H2O 2MnO4- ? 2MnO2 3CNO- 2OH-
  • check balance

10
Voltaic Cells
  • A spontaneous redox reaction that does work
  • Anode
  • electrode at which oxidation occurs
  • loses mass
  • electrons released, sign is negative
  • Cathode
  • electrode at which reduction occurs
  • gains mass
  • electrons consumed, sign is positive

11
(No Transcript)
12
Cell EMF
  • Difference in potential energy of electrons at
    the anode and cathode
  • Diff. in potential energy per electrical charge
    measured in volts
  • 1 V 1 J C
  • Potential difference EMF, electromotive
    force
  • Ecell cell potential cell voltage
  • Eºcell cell potential under std. conditions
  • 1 M, 1 atm, 25 ºC

13
  • Standard reduction potentials
  • E ºred in tables
  • E ºcell E ºred (cathode) - E ºred (anode)
  • Based on standard hydrogen electrode
  • 2H(aq, 1M) 2e- ? H2(g, 1atm) E ºred
    0 V
  • Zn(s) 2H(aq) ? Zn2(aq) H2(g) E ºcell
    0.76 V
  • 0.76 V 0 V - E ºred (anode)
  • Zn2(aq, 1M) 2e- ? Zn(s) E ºred (anode)
    -0.76 V

14
(No Transcript)
15
(No Transcript)
16
Problem
  • Calculate Eºcell for
  • 2Al(s) 3I2(s) ? 2Al3(aq) 6I-(aq)
  • Anode 2Al ? 2Al3 6e-
  • Cathode 3I2 6e- ? 6I-
  • Eºcell E ºred (cathode) - E ºred (anode)
  • E ºcell 0.54 V - (-1.66 V)
  • E ºcell 2.20 V

17
  • Note stoichiometric coefficient does not affect
    the value of the E ºred (it is an intensive
    property)
  • E ºox - E ºred
  • 2Al(s) 3I2(s) ? 2Al3(aq) 6I-(aq)
  • 2Al ? 2Al3 6e- E ºox 1.66 V
  • 3I2 6e- ? 6I- E ºred 0.54 V
  • E ºcell E ºox E ºred 2.20V
  • The more positive the E ºcell the more driving
    force for the reaction

18
Oxidizing/Reducing Agents
  • Oxidizing agents cause oxidation
  • oxidizing agents are reduced
  • the more () the E ºred the better the ox. agent
  • Reducing agents cause reduction
  • reducing agents are oxidized
  • the more (-) the E ºred the better the red. agent

19
  • Which is the better oxidizing agent?
  • NO3- 4H 3e- ? NO 2H2O E ºred
    0.96 V
  • Ag e- ? Ag E ºred 0.80 V
  • Cr2O72- 14H 6e- ? 2Cr3 H2O E ºred 1.33 V
  • Which is the strongest reducing agent?
  • I2 2e- ? 2I- Eºred 0.54 V
  • Fe2 2e- ? Fe Eºred -0.44 V
  • MnO4- 8H 5e- ? Mn2 4H2O Eºred 1.51 V

20
Spontaneity of Redox Reactions
  • Spontaneous redox rxns have positive potentials
  • Non-spontaneous redox rxns have negative
    potentials
  • Is this rxn spont. or non-spont.?
  • MnO4- 8H 5Fe2 ? 5Fe3 Mn2 4H2O
  • Fe2 ? Fe3 1e- Eºox -0.77 v
  • MnO4- 8H 5e- ? Mn2 4H2O E ºred 1.51 v
  • E ºox E ºred 0.74 v

Yes
21
EMF Free Energy
  • If both DG E are a measure of spontaneity, they
    must be related
  • DG - nFE
  • F is Faradays constant 1 F 96,500 J/v mol
    e-
  • remember 1 C 1 J/v
  • n mol e- transferred
  • In the standard state DGº - nFEº

22
  • Calculate the standard free energy change for
    Hg 2Fe3 ? Hg2 2Fe2
  • n 2 mol electrons transferred
  • Hg ? Hg2 2e- Eox - 0.854 v
  • 2Fe3 2e- ? 2Fe2 Ered 0.771 v
  • Ecell - 0.083 v
  • DG - (2 mol e-)(-0.083 v)(96,500 J/v mol e-)
  • 16 kJ

23
Concentration Cell EMF
  • Nernst Equation
  • relationship between DG concentrations
  • DG DGº RT ln Q Q prodx/reacty
  • substitute -nFE for DG
  • E Eº - (RT/nF) ln Q or
  • E Eº - (2.303 RT/nF) log Q
  • 2.303 RT/F 0.0592 v-mol e- at std. temp.
  • E Eº - (0.0592/n) log Q

24
  • Calculate the emf that the following cell
    generates when Mn2 0.10 M Al3 1.5
    M 2Al 3Mn2 ? 2Al3 3Mn
  • Eº 0.48 v
  • E ( 0.48 v) - (0.0592 v/ 6) log
    (1.5)2/(0.10)3
  • E 0.45 v
  • when Mn2 1.5 M Al3 0.10 M
  • E ( 0.48 v) - (0.0592 v/ 6) log
    (0.10)2/(1.5)3
  • E 0.51 v

25
Equilibrium Constants
  • Remember DG DGº RT ln Q, if Q K, then DG
    0, therefore -nFE 0 and
  • 0 Eº - (RT/nF) ln K or
  • 0 Eº - (0.0592/n) log K
  • K can be calculated from cell potentials
  • log K nE º/0.0592

26
  • Calculate the equilibrium constant, K, for
    2IO3- 5Cu 12H ? I2 5Cu2 6H2O
  • Eº 0.858 v
  • n 10 mol e- transferred
  • log K nEº/0.0592
  • log K 145
  • K 1 x 10145

27
Voltaic Cells
  • Lead storage battery
  • PbO2 SO4-2 4H 2e- ? PbSO4 H2OPb
    SO42- ? PbSO4 2e-
  • Ecell 2.041 v
  • Dry cell
  • NH4 2MnO2 2e- ? Mn2O3 2NH3 H2OZn ?
    Zn2 2e-
  • In an alkaline cell the NH4Cl is replaced with KOH

28
  • Ni-Cd
  • NiO2 2H2O 2e- ? Ni(OH)2 2OH- Cd 2OH-
    ? Cd(OH)2 2e-
  • Fuel cells
  • 4e- O2 2H2O ? 4OH- 2H2 4OH- ?
    4H2O

29
Electrolytic Cells
  • Redox reactions that are not spontaneous
  • Must be driven by an outside source of electrical
    energy
  • Cathode
  • reduction occurs
  • by sign convention, is negative
  • Anode
  • oxidation occurs
  • by sign convention, is positive

30
Quantitative Aspects
  • Redox reactions occur in stoichiometric
    relationship to the transfer of electrons
  • Electrons put into a system through electrical
    energy, can be quantized
  • Coulomb quantity of charge passing through
    electrical circuit in 1 s at 1 ampere (A) current
  • Coulomb (amp) (seconds)

31
Problem Calculate the mass of Mg formed upon
passage of a current of 60.0 A for a period of
4.00 x 10 3 s.
  • MgCl2 ? Mg Cl2
  • Mg2 2e- ? Mg 2Cl- ? Cl2 2e-
  • we are concerned with the reduction
  • (60.0 A)(4 x 103s)(1C/1 A-s) 2.4 x 105 C
  • (2.4 x 105 C)(1 mol e-/ 96,500 C) 2.49 mol e-
  • (2.49 mol e-)(1 mol Mg/2 mol e-) 1.24 mol Mg
  • (1.24 mol Mg)(24.3 g/mol) 30.1 Mg

32
Electrical Work
  • DG wmax DG - nFE wmax - nFE
  • Max work proportional to potential
  • wmax - n F E
  • J (mol) (C/mol) (J/C)
  • Electrical work (watt) (time)
  • 1 watt (W) 1 J/s or watt-s J
  • 1 kWh 3.6 x 106 J
Write a Comment
User Comments (0)
About PowerShow.com