Hash Functions from Sigma Protocols and Improvements to VSH - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Hash Functions from Sigma Protocols and Improvements to VSH

Description:

Hash Functions from Sigma Protocols and Improvements to VSH. Mihir Bellare Todor Ristov ... CR hash functions from homomorphic encryption ... – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 28
Provided by: deaki2
Category:

less

Transcript and Presenter's Notes

Title: Hash Functions from Sigma Protocols and Improvements to VSH


1
Hash Functions from Sigma Protocols and
Improvements to VSH
  • Mihir Bellare Todor Ristov
  • UC San Diego

2
Context
  • Hash functions are failing
  • MD5 broken
  • BB93, Dob96, WY05, LWW05
  • SHA-1 in jeopardy
  • WYY05, CR06, CMR07

Prof. Wang
3
Our Argument
  • Sometimes we may be willing to sacrifice some
    speed for security.

Example May need a signature on an
important hashed-then-signed document to be
secure for next 20 years.
In this case, what becomes interesting are hash
functions that are
  • Provably secure
  • As fast as possible subject to above

4
Contributions
  • We provide a generic way to transform any
    S-protocol into a collision-resistant (CR) hash
    function.

Examples of S-protocols
Prover Verifier Input pk, sk
Input pk
  • Fiat-Shamir
  • GQ
  • Schnorr

Y
c
z
our transform
H
S-hash function (CR)
5
A Hint on How it Works
Examples of S-protocols
Prover Verifier Input pk, sk
Input pk
  • Fiat-Shamir
  • GQ
  • Schnorr

Y
c
z
The associated hash function is
Hpk(c, z) Y
key (public)
  • How do we compute this given only pk, c, z?
  • Why is it CR?

Later!
6
Yields many hash functions
  • Cases where transformation works directly
  • Cases where S-protocol needs modification

7
S-hash functions are chameleon
  • KrRa00
  • There exists trapdoor sk to find collisions
  • Some uniformity properties

Applications
  • On-line/off-line signing ShTa01
  • Chameleon signatures KrRa00
  • Designated verifier signatures JSI96, SWP04

8
S-hash functions are keyed
Hpk(c, z)
key
  • Different signers can use different keys
  • Each key needs to be attacked separately

Increases work factor of attack
9
S-hash functions are fast
H-SFS is the fastest known CR hash function with
a security proof based on the standard factoring
assumption
  • Pre is the amount of precomputation in group
    elements
  • Table entry is the average number of message
    bits hashed per
  • modular multiplication

10
S-hashing unifies previous work
  • H-Sch is the classical hash function of CHP91,
  • shown to be chameleon by KrRa00
  • H-Oka is a generalization from CHP91
  • H-GQ is the chameleon hash function of AM04

11
Connection to VSH
  • MS Micali-Shamir S-protocol
  • SMS Strong MS (our modification)
  • H-SMS derived hash
  • VSH Fast CR-hash of CLS06 proven secure
    under
  • the VSSR assumption.
  • Given composite number N it is hard to find
  • x ? ZN
  • k 1, and integers e1, , ek, not all even
  • such that
  • x2 p1 pk (mod N)
  • where pi is the i-th prime.

H-SMS is almost the compression function of VSH
Alternative way to understand VSH, which also
leads to VSH
e1
ek
12
VSH Improvement to VSH
VSH
  • Fast hash function proven secure based on VSSR
    assumption
  • The compression function is not CR

VSH
  • The compression function is CR
  • Up to 5 times faster than VSH on short messages
  • Same performance on long messages
  • Also proven secure based on VSSR
  • Based on idea of H-SMS

13
Related Work
  • Bit-commitment from S-protocols Dam90, CDM00
  • CR hash functions from homomorphic encryption
  • and PIR IKO05 slower than S-hash functions
    and based
  • on stronger assumptions
  • Other provably secure hash functions
  • SWIFFT LMPR08
  • MuHASH BeMi97
  • Tilich and Zemor TiZe94, improved in PCQ08

14
S-protocols and Our Hash Function
Schnorr
In general
Prover Verifier Input pk, sk
Input pk c ? ChSet
d ? V(pk, Ycz)
Prover Verifier Input Xg-x,
x Input Xg-x y ? Zp Y ? gy
c ? Zp z ? yxc mod p
d ? (Xcgz Y)
Y
Y
c
c
z
z
Our hash function
Hpk(c, z) Y
  • But
  • How can we compute this given just pk?
  • Why is it CR?

15
Computing H StHVZK
Prover Verifier Input pk, sk
Input pk c ? ChSet
d ? V(pk, Ycz)
Y
c
z
HVZK
StHVZK
pk
Sim
Y c z
c ? CmSet
Y c z
Sim
pk
z ? RpSet
StSim
randomized
Y
deterministic
Most S-protocols satisfy StHVZK
We set Hpk(c, z) StSim(pk, c, z)
16
CR from Strong Special Soundness
17
  • Theorem Let SP be a S-protocol that is
  • StHVZK and
  • Satisfies strong special soundness.

Then the family of hash functions H obtained from
SP using our transformation is
collision-resistant.
18
Schnorr
Sim
Prover Verifier Input Xg-x,
x Input Xg-x y ? Zp Y ? gy
c ? Zp z ? yxc mod p
d ? (Xcgz Y)
X
c ? Zp
Y
z ? Zp
c
z
StSim
Y Xcgz
  • Satisfies StHVZK

Hence the hash function is defined by HX(c, z)
Xcgz
  • Satisfies strong special soundness under the
    discrete-log
  • assumption BeSh07
  • Hence, H-Sch is CR under the discrete-log
    assumption

19
GQ
Sim
X
c ? Zp
Prover Verifier Input (N,
e, k, X), x Input Xx-e y ?
ZN Y ? ye c ?
0,,2k-1 z ? yxc
d ? (Y Xcze )
Y
z ? Zp
c
z
StSim
Y Xcze
  • Satisfies StHVZK

Hence the hash function is defined by HX(c, z)
Xcze mod N
  • Satisfies strong special soundness under the
  • one-wayness of RSA, hence hash function is CR

20
Fiat-Shamir
si ? ZN ui ? si-2 mod N pk (N, k, u ) sk s
Prover Verifier
Input pk, sk
Input pk y ? ZN Y ? y2 mod N
c ? 0, 1k z ? y ? si mod
N d ? (Y z2 ? ui mod
N)
Y
c
z
ci
ci
  • Satisfies StHVZK

Hence the hash function is defined by
ci
Hpk(c, z) z2 ? ui mod N
Hpk 0, 1k ZN ? ZN
  • But it DOES NOT satisfy strong special soundness

(Y, c, z), (Y, c, -z) are both accepting
transcripts
21
Strong Fiat-Shamir
si ? ZN ui ? si-2 mod N pk (N, k, u ) sk s
Prover Verifier
Input pk, sk
Input pk y ? ZN Y ? y2 mod N
c ? 0, 1k z ? y ? si N
mod N d ? (Y z2 ? ui mod
N)
Y
c
z
ci
ci
w if w N/2
For w ? ZN, wN
Let ZN ZN n 0, , N/2
-w otherwise
  • Satisfies StHVZK, hence the hash function is
    defined by

ci
Hpk(c, z) z2 ? ui mod N
Hpk 0, 1k ZN ? ZN
  • Satisfies strong special soundness under the
    factoring
  • assumption

22
Micali-Shamir
pi - small prime quadratic residue
si ? pi-2 mod N pk (N, k, p ) sk s
Prover Verifier
Input pk, sk
Input pk y ? ZN Y ? y2 mod N
c ? 0, 1k z ? y ? si mod
N d ? (Y z2 ? pi mod
N)
Y
c
z
ci
ci
  • Satisfies StHVZK

Hence the hash function is defined by
ci
Hpk(c, z) z2 ? pi mod N
Hpk 0, 1k ZN ? ZN
  • But it DOES NOT satisfy strong special soundness

(Y, c, z), (Y, c, -z) are both accepting
transcripts
23
Strong Micali-Shamir
pi - small prime quadratic residue
si ? pi-2 mod N pk (N, k, p ) sk s
Prover Verifier
Input pk, sk
Input pk y ? ZN Y ? y2 mod N
c ? 0, 1k z ? y ? si N
mod N d ? (Y z2 ? pi mod
N)
Y
c
z
ci
ci
w w N/2
Let ZN ZN n 0, , N/2
For w ? ZN, wN
-w otherwise
  • Satisfies StHVZK, hence the hash function is
    defined by

ci
Hpk(c, z) z2 ? pi mod N
Hpk 0, 1k ZN ? ZN
  • Satisfies strong special soundness under the
    SRPP
  • assumption

24
VSH
Compression function vshN 0, 1k ZN ? ZN
defined by
ci
vshN(c, z) z2 ? pi mod N
The key N is a composite number
pi - i-th prime
vshN(c, z) vshN(c, -z) vsh is not
CR
The VSH hash function is obtained by MD-iteration
of vsh with initialization vector 1
VSH is CR under the VSSR assumption
25
VSH
Compression function vshN 0, 1k ZN ? ZN
defined by
ci
fN (z)
vshN (c, z) (z2 ? pi ) pk1 mod N
0 w ZN 1 otherwise

?
The key N is a k-bit composite number
fN (w)
pi - i-th prime
  • vsh is CR under the VSSR assumption
  • The VSH hash function is obtained by
    MD-iteration of vsh
  • with initialization vector being the first k-1
    message bits.
  • Hence faster than VSH because fewer iterations
    of
  • compression function are used.
  • vsh is CR VSH is CR under the
    VSSR assumption

26
VSH / VSH performance comparison
  • The size of the modulus used here is 1024 bits
  • The block and input size are given in bits
  • Unoptimized implementation on a Pentium IV, 3
    Ghz Machine

27
Summary
  • We show how to transform any S-protocol into a
  • collision-resistant hash function
  • We obtain hash functions H-Sch, H-GQ, H-SFS,
    H-SMS,
  • via existing or modified S-protocols
  • H-SFS is the fastest CR hash function with a
    proof under the
  • standard factoring assumption
  • S-hash functions are chameleon and unify
    previous work
  • Based on H-SMS we obtain a modification VSH of
    VSH that
  • has a CR compression function and is faster on
    short
  • messages
Write a Comment
User Comments (0)
About PowerShow.com