Blood%20Gas%20Interpretation - PowerPoint PPT Presentation

About This Presentation
Title:

Blood%20Gas%20Interpretation

Description:

Common errors of arterial blood sampling. Air in sample: PCO2, pH, PO2 ... 19 y/o male, Duchenne muscular dystrophy on wheelchair for 7 yrs ... – PowerPoint PPT presentation

Number of Views:210
Avg rating:3.0/5.0
Slides: 51
Provided by: SWL3
Category:

less

Transcript and Presenter's Notes

Title: Blood%20Gas%20Interpretation


1
Blood Gas Interpretation
  • 2005/8/25

2
Before beginning
  • Allens test for radial and ulnar artery
  • Common errors of arterial blood sampling
  • Air in sample PCO2?, pH?, PO2?
  • Venous mixture PCO2?, pH?, PO2?
  • Excess anticoagulant (dilution) PCO2?, pH?, PO2?
  • Metabolic effects PCO2?, pH?, PO2?
  • Simultaneous electrolytes panel

3
Acid Base Physiology
  • The Law of Mass Action
  • A B ? C D
  • K1/K2 CD/AB
  • Dissociation constant for an acid
  • Ka HA-/HA

K1
K2
4
(No Transcript)
5
Henderson-Hasselbalch Equation
  • CO2 H2O ? H2CO3 ? H HCO3-
  • H K x CO2/HCO3-
  • 24 PCO2/HCO3-
  • pH 6.1 log (HCO3-/0.0301xPCO2)

6
Normal Range
  • pH 7.35-7.45
  • PCO2 35-45 mmHg (40 mmHg)
  • HCO3- 22-26 mEq/L (24 mEq/L)

7
Bicarbonate Buffering System
Metabolism Oral intake
Oral intake
Metabolism
  • CO2 H2O ? H2CO3 ? H HCO3-

Kidney
Kidney Stomach
Lung
8
Acid Production and Elimination
  • Reaction Products
    Elimination
  • Glucose H HCO3-
  • Fat H
    HCO3-
  • Glucose H lactate
  • Cysteine H sulfate
  • Phosphoproteins H phosphate

O2
Lungs 24,000 mEq/day Volatile acid
O2
Anaerobic
Kidneys 50-100 mEq/day Non-volatile acid
O2
O2
9
Determinants of CO2 in the alveolus
  • VA VE VD VT x f (1- VD/VT)
  • PACO2 k x (VCO2/VA)
  • Physiologic dead space anatomic dead space
    alveolar dead space

10
PaCO2
PaCO2 gt 40 mmHg, MV 2x normal PaCO2 gt 80 mmHg ?
CO2 nacrosis
11
Renal Regulation of Bicarbonate
  • Reabsorption of filtered HCO3- (4000 mmol/day)
  • Formation of titratable acid (4000 mmol/day H)
  • Excretion of NH4 in the urine
  • 80-90 of HCO3- reabsorbed in the proximal
    tubule
  • Distal tubule reabsorption of remained
    bicarbonate and secretion of hydrogen ion

12
Proximal Renal Tubule
13
Distal Renal Tubule
14
Distal Tubule NH4 excretion
15
Acid Base Disturbance
  • Metabolic acidosis HCO3-?
  • Metabolic alkalosis HCO3- ?
  • Respiratory acidosis PCO2?
  • Respiratory alkalosis PCO2 ?
  • Simple
  • Primary
  • Secondary
  • mixed

16
Metabolic Acidosis
  • Indogenous acid production (lactic acidosis,
    ketoacidosis)
  • Indogenous acid accumulation (renal failure)
  • Loss of bicarbonate (diarrhea)
  • High anion gap
  • Normal (hyperchloremic )

17
Pathophysiologic Effect of Metabolic Acidosis
  • Kussmaul respiration
  • Intrinsic cardiac contractility?, normal
    inotropic function
  • Peripheral vasodilatation
  • Central vasoconstriction ? pulmonary edema
  • Depressed CNS function
  • Glucose intolerance

18
Anion Gap
  • AG Na - (Cl- HCO3-)
  • Unmeasured anions in plasma (normally 10 to 12
    mmol/L)
  • Anionic proteins, phosphate, sulfate, and organic
    anions
  • Correction if albumin lt 4
  • Albumin ?1 ? AG ? 2.5

19
Anion Gap
  • Increase
  • Increased unmeasured anions
  • Decreased unmeasured cations (Ca, K, Mg)
  • Increase in anionic albumin
  • Decrease
  • Increase in unmeasured cations
  • Addition of abnormal cations
  • Reduction in albumin concentration
  • Decrease in the effective anionic charge on
    albumin by acidosis
  • Hyperviscosity and severe hyperlipidemia (
    underestimation of sodium and chloride
    concentration)

20
(No Transcript)
21
Causes of High-Anion-Gap Metabolic Acidosis Causes of High-Anion-Gap Metabolic Acidosis Causes of High-Anion-Gap Metabolic Acidosis
Lactic acidosis Toxins  
Ketoacidosis Ethylene glycol  
Diabetic Methanol  
Alcoholic Salicylates  
Starvation Renal failure (acute and chronic)  
22
Metabolic Alkalosis
  • Net gain of HCO3-
  • Loss of nonvolatile acid (usually HCl by
    vomiting) from the extracellular fluid
  • Kidneys fail to compensate by excreting HCO3-
    (volume contraction, a low GFR, or depletion of
    Cl- or K)

23
Respiratory Acidosis
  • Severe pulmonary disease
  • Respiratory muscle fatigue
  • Abnormal ventilatory control
  • Acute vs. Chronic (gt 24 hrs)

24
Respiratory Acidosis
  • Acute anxiety, dyspnea, confusion, psychosis,
    and hallucinations and coma
  • Chronic sleep disturbances, loss of memory,
    daytime somnolence, personality changes,
    impairment of coordination, and motor
    disturbances such as tremor, myoclonic jerks, and
    asterixis
  • Headache vasocontriction

25
(No Transcript)
26
Respiratory Alkalosis
  • Strong ventilatory stimulus with alveolar
    hyperventilation
  • Consuming HCO3-
  • gt 2-6 hrs renal compensation (decrease NH4/acid
    excretion and bicarbonate re-absorption)

27
Respiratory Alkalosis
  • Reduced cerebral blood flow
  • dizziness, mental confusion, and seizures
  • Minimal cardiovascular effect in normal health
  • Cardiac output and blood pressure may fall in
    mechanically ventilated patients
  • Bohr effect left shift of hemoglobin-O2
    dissociation curve ? tissue hypoxia (arrhythmia)
  • intracellular shifts of Na, K, and PO4- and
    reduces free Ca2

28
Stepwise Approach
  • Do comprehensive history taking and physical
    examination
  • Order simultaneous arterial blood gas measurement
    and chemistry profiles
  • Assess accuracy of data
  • Direction of pH always indicates the primary
    disturbance
  • Calculate the expected compensation
  • Second or third disorders

29
Determination of primary acid-base disorders
Respiratory alkalosis
Metabolic alkalsosis
7.6
pH
N
7.4
Metabolic acidosis
Respiratory acidosis
7.2
30
40
50
PCO2 (mmHg)
30
(No Transcript)
31
Compensatory Mechanisms
  • Respiratory compensation
  • Complete within 24 hrs
  • Metabolic compensation
  • Complete within several days
  • Both the respiratory or renal compensation almost
    never over-compensates

32
Prediction of Compensatory Responses on Simple Acid-Base Disturbances Prediction of Compensatory Responses on Simple Acid-Base Disturbances Prediction of Compensatory Responses on Simple Acid-Base Disturbances
Disorder Prediction of Compensation  
Metabolic acidosis PaCO2 (1.5x HCO3-) 8 or  
PaCO2 will ? 1.25 mmHg per mmol/L ? in HCO3- or  
PaCO2 HCO3- 15  
Metabolic alkalosis PaCO2 will ? 0.75 mmHg per mmol/L ? in HCO3- or  
PaCO2 will ? 6 mmHg per 10-mmol/L ? in HCO3- or  
PaCO2 HCO3- 15  
Respiratory alkalosis  
Acute HCO3- will ? 2 mmol/L per 10-mmHg ? in PaCO2  
Chronic HCO3- will ? 4 mmol/L per 10-mmHg ? in PaCO2  
Respiratory acidosis  
Acute HCO3- will ? 1 mmol/L per 10-mmHg ? in PaCO2  
Chronic HCO3- will ? 4 mmol/L per 10-mmHg ? in PaCO2  
33
(No Transcript)
34
(No Transcript)
35
Mixed Acid Base Disorders
Primary Secondary Secondary Secondary Secondary
Primary Respiratory acidosis Respiratory alkalosis Metabolic acidosis Metabolic alkalosis
Respiratory acidosis ? ?
Respiratory alkalosis ? ?
Metabolic acidosis ? ? ?
Metabolic alkalosis ? ? ?
36
Oxygenation
  • Poor diffusion across alveolar membrane
  • Small pressure gradient between PAO2 and PaO2
  • Large alveolar area is required for gas transfer
  • Hemoglobin carries the majority of oxygen in the
    blood

37
(No Transcript)
38
Oxygenation
  • Ventilation and alveolar disease
  • Ventilation??PAO2 ??PaO2 ?, combined PCO2?
  • Alveolar disease
  • Reduced alveolar area
  • Thickened alveolar membrane
  • V/Q mismatch
  • Shunt

39
Alveolar-arterial Oxygen Gradient
  • PAO2 FiO2 (PB-PH2O) PCO2/R
  • 0.21(760-47) 40/0.8
  • 100
  • R respiratory quotient
  • P(A-a)O2 PAO2 PaO2
  • ( Age x 0.4)

40
(No Transcript)
41
Oxygen Content and Saturation
  • O2 content 1.34 x Hb x Saturation 0.0031xPO2

42
Pulse Oximeters
  • Percentage of oxygenated hemoglobin in blood
  • Absorption of light in the red and infra-red
    spectra
  • Continuous monitor
  • Accurate (?3) at high saturation, less below 80
  • Insensitive around the normal PO2
  • COHb and MetHb

43
Clinical Example 1
  • 72 y/o male, COPD with acute exacerbation
  • Under O2 2L/min
  • pH 7.44, PCO2 54, PO2 60, HCO3 36
  • Metabolic alkalosis with respiratory compensation
  • Mixed respiratory acidosis

44
Clinical Example 2
  • 30 y/o male, sudden onset dyspnea
  • Room air
  • 7.33/24/111/12
  • Metabolic acidosis
  • Respiratory compensation
  • Normal A-a O2 gradient
  • O2? hyperventilation

45
Clinical Example 3
  • 70 y/o male, acute hemoptysis and dyspnea
  • Room air
  • 7.50/31/88/24
  • Respiratory alkalosis
  • Not been renal compensated yet
  • Normal PO2, but A-a O2 gradient?

46
Clinical Example 4
  • 18 y/o female, chest tightness and dyspnea for 4
    hrs
  • RR 28/min, distressed, widespread wheezing
  • O2 mask 6L/min
  • 7.31/49/115/26
  • Respiratory acidosis
  • Normal bicarbonate ? acute
  • May have problems with oxygenation

47
Clinical Example 5
  • 37 y/o female, mild asthma history
  • Wheezes for 3 weeks, increasing chest tightness
    and dyspnea for 24 hrs, call for ambulance with
    Oxygen use
  • RR 18/min, anxious and distressed
  • Room air
  • 7.37/43/97/27
  • Normal?
  • r/o CO2 retention
  • Low A-a O2 Oxygen use in the ambulance

48
Clinical Example 6
  • 19 y/o male, Duchenne muscular dystrophy on
    wheelchair for 7 yrs
  • No previous respiratory problems but frequent UTI
  • Room air
  • 7.21/81/44/36
  • Respiratory acidosis
  • Metabolic compensation
  • Normal A-a O2 ? pure ventilatory failure

49
Clinical Example 7
  • 57 y/o male, smoker, one week URI then 36 hrs
    productive cough, fever and dyspnea
  • RR 36/min, distressed, CXR RLL pneumonia
  • 7.33/27/51/22, 2L/min
  • 7.34/32/58/24, 10L/min mask
  • Early metabolic acidosis
  • Severe hypoxemic respiratory failure
  • Intra-pulmonary shunting

50
Thank you for your attention
Write a Comment
User Comments (0)
About PowerShow.com