Title: Kein Folientitel
1 MEMS Tuneable Dielectric Resonator for Mobile
Communication Systems
G. Panaitov, R. Ott and N. Klein Research Center
Jülich, Germany
2MEMS Tuneable Dielectric Resonator
- Outline
- Principle of Cellular Mobile Communication
- General
- Approach (MEMS, Slotline)
- Experimental Setup
- Results
- Summary
3Principle of Cellular Mobile Communication
GSM Mobile System 960-935MHz 910-895MHz
GSM Network
MS mobile station
SC switching center
BS base station
4Principle of Cellular Mobile Communication
GSM Mobile System 960-935MHz 910-895MHz
- MS mobile station
- transmitter
- receiver
- control circuitry
Receiv. Chnl. 25kHz
Transm. Chnl. 25kHz
Disadvantages - very limited number of channels
- limited propagation
5Principle of Cellular Mobile Communication
GSM Mobile System Base Station
- Communication via BS
- MS1 BS MS2
- BS transmitter/receiver, towers
- effective retransmission
- BS coverage area hexagon
- limited to 30-40km
BS base station
30 40 km
6Principle of Cellular Mobile Communication
GSM Mobile System Cellular Network
Series of individual cells build a Cellular
network covers the GSM area
7Principle of Cellular Mobile Communication
GSM Mobile System Cellular Network
- Each NC with the neighbours
- cells form a kind of
- Cluster configuration
- Frequency distribution
- every cluster use the complete set of
- available frequencies (1000)
- Total Number of available channels
- Nchnl 1000Nclst
8Principle of Cellular Mobile Communication
GSM Mobile System Switching Center
- BS SC connection
- multichannel radio or fiber-optic cables
- Flexible frequency use
- - looks for the best frequency
- connection between MS
- - change f-channel if MS moves
- out of cell while the call in
progress - - change of f-channel at a noise
- disturbance
Switching center
9Principle of Cellular Mobile Communication
GSM Mobile System Switching Center
- SC and BS require f-selective
- components (filters, resonators)
- with tunagle resonance frequency
- 3G UMTS (universal mobile
- telecommunication system)
- - 1920-1980MHz uplink
- - 2110-2170MHz downlink
- - high data rate (up170kb/s mobile)
- require faster tuning time (ms)
Switching center
10Tunable UMTS Filters based on dielectric
resonators (TUF)
Project goal Development of the tuneable
dielectric resonator at about 2 GHz (large tuning
df, high Q)
- Techniques Partners
- Ferroectric based tuning (South Bank University
(London) - Ferrite and ferroelectric/paraelectric (Warsaw
University of Technology) - Dielectric ceramic development (Institute Josef
Stefan (Ljubljana), Filtronic Comtek (UK) Ltd) - MEMS (Micro Electro-Mechanical Systems) tuneable
resonator (FZJ, Jülich)
- Device Examples (Ericson)
- Tuneable reject filter (to remove narrow band
interferer) - t ms low load. Q gt 3000 at 2 GHz df
up 60 MHz, - Channel filter, 5 MHz wide
- t seconds medium load. Q gt 10000 at
2 GHz df up 60 MHz
11MEMS micro-electromechanical switch
- Free-standing strictures 1)micro bridges 2)
cantilever - Actuation 1) Electrostatic 2) Bimetal 3)
Piezo-electric
Microstrip 1
Microstrip 2
12MEMS micro-electromechanical switch
Technology 1) sacrificial layer
2) Si-macromachining, anisotropic
etching (RWTH, Aachen)
13Microwave Slotlines
Slotline planar microwave resonator
- Narrow slot etched in the metallisation
- on one side of dielectric substrate
- Resonanse parameters
- Z, f, l, Q depends on h, w, er
-
- for thick substrate h gtgt w
h
er
w
14Microwave Slotlines
Short End Slotline Microwave Resonator
- Resonator parameters
- f, l, Q depends on
- l-slotline length
- State of the free end of slotline
- closed/open
-
l
h
er
w
15Microwave Slotlines
Short End Slotline Transmission Line Theory
Z0 - characteristic impedance b 2p/l -
propagation constant Z1, Z2 - slotline end
impedances
16MEMS tuneable dielectric resonator
Tuning Concept
l
- 4 radial slots
- MEMS open quarter wave resonator (ll/4)
- MEMS closed half wave resonator (ll/2)
- DR TE01? ,mode coupled to slotline if fDR
fquarterwave
17MEMS tuneable dielectric resonator
Simulation with CST Microwave Studio E-field
- MEMS open
- strong intermode coupling
- f 1.878 GHz Q6,700
- MEMS closed
- weak intermode coupling
- f 1.945 GHz Q21,500
tuning range 67 MHz (3)
18MEMS tuneable dielectric resonator
Simulation E-field of the single slotline
MEMS open Quarterwave resonator
MEMS closed Halfwave resonator
19MEMS tuneable dielectric resonator
Piezo Actuator based Experimental Setup
- Actuator parameters
- size 32 x 7.8 x 1.2 mm3
- max deflection 325µm
- voltage 100V or 0-200V
- switching time 1,5ms
- force at the end 2,25N
20Piezo Actuators
Piezo Effect
(e.g.
PZT)
- dL Edij L0 dij V single layer
- small dij 0.5 µm/kV
- dL n dij V multilayer
- max displacement up to 5µm
L0dL
V
Bimorph Piezo Actuator (Benders)
- similar to bimetal thermoexpan.
- perpendicular piezo effect
- Expansion contraction layers
- movement up to 1000 µm
- up to 109 cycles
21MEMS tuneable dielectric resonator
Piezo actuator assembly
- Actuator parameters
- size 32 x 7.8 x 1.2 mm3
- max deflection 325µm
- voltage 100V or 0-200V
- switching time 1,5ms
- force at the end 2,25N
Thin film slotlines 19x1x0.001mm3
22MEMS tuneable dielectric resonator
Experimental results Bulk slotlines
19x0.4x0.5mm3
Tuning Parameters
Piezo actuator assembly
Bulk slotlines 19x0.4x0.5mm3
- Variation of frequency mean discret value
df 3.5MHz/switch - No strong intermodular coupling betveen
slotlines - digital tuning possible
23MEMS tuneable dielectric resonator
Digital frequency tuning
N - number of tuning elements (slots) df -
frequency step (digitalisation unit) dFn n
df , 0 lt n lt N
dFn n1df1 n2df2 df2 kdf1
df0.2MHz N25 Tuning
5x0.2MHz
df10.2MHz df21MHz N8
24MEMS tuneable dielectric resonator
Experimental results digital tuning
- Optimisation of the frequency step
- slotline width, w
- slotline length, l
- DR/Slotline distance, h
25MEMS tuneable dielectric resonator
Experimental results Bulk slotlines 20x1x0.5mm3
Tuning Parameters
Piezo actuator assembly
Bulk slotlines 20x1x0.5mm3
df 7 MHz/switch Tuning df 14MHz Q
6000 - 10000
26MEMS tuneable dielectric resonator
Exp. Results Frequency step as the function of
slotline length
Bulk slots width1mm thickness0.5mm h
2mm
Analyse of df(l) dependence df
0.2exp(l/3.43) 0.12
27MEMS tuneable dielectric resonator
Exp. results Frequency step, df as the function
of the h-distance between DR and slots (w0.4 and
1mm)
28MEMS tuneable dielectric resonator
Experimental results digital tuning df
0.25MHz
Tuning Parameters Bulk slotlines 19x0.4x0.5mm3
DR/Slots distance h12mm
Frequency step, df, versus h
df 0.26MHz/switch df 1.06MHz Q 25000
29MEMS tuneable dielectric resonator
- Conclusion
- Novel high Q fast digital tuning concept for DR
developed - Concept was proved by piezo-bimorph actuator
design - Wide range digital tuning with 7 and 3.5MHz
steps can be realised at high Qs up to 10000 - Optimisation design, coupling parameters,
stability etc.
30MEMS tuneable dielectric resonator
Experimental results optimisation of actuating
voltage
Frequency and Q-data versus Piezo/Slot Distance
Strong capacitive coupling
Weak capacitive coupling
31Cylindrical dielectric resonator
TE01d mode
a
L
a radius L length (height) er dielectric
constant f resonant frequency
32MEMS tuneable dielectric resonator
Micromachined MEMS cantilever in flip-chip design
4 micromachined cantilever on Si-subtrate are
mounted flip-chip to control the slotline state
Resonator assambly with MEMS cantilever
33MEMS tuneable dielectric resonator
Idea of the approach
-
- compact
- low power consumption
- low weight
- fast tuning time t ms