Title: A1258150189yjgFk
1From discrete tomography to maintenance
scheduling
D. de Werra Ecole Polytechnique Fédérale de
Lausanne EPFL
Joint work with C. Bentz, M.C. Costa, C.
Picouleau (CNAM, Paris) B. Ries (EPFL)
2Table of contents
- Discrete tomography
- An extension to scheduling
- Solvable cases
- Less solvable cases
- Variations and extensions
- No conclusion
31. Discrete tomography
Image (mxn) array A m.n pixels
n columns
color of pixel (i,j) aij 1,2,,or k line row
or column hij pixels with color j
in line i Problem how to
reconstruct the image?
mrows
A
4(No Transcript)
5Graph model
Pi
h(Pl) (3 1 1)
Pl
G (V,E) k colorsP collection of chains Pi
(sets of vertices) H collection of vectors hi
(hi1,hik) hij vertices in Pi
with color j
6Problem ?(G,k, P, H )Find partition V1,, Vk
of vertex set Vsuch that Vj nPi hij
?i,j
NB V1,,Vk not a proper k-coloring ! If V1,Vk
required to be proper
then ?(G,k,P,H)
72. Extension to scheduling
Stations to be renovated(one month for each)
k months available
hij stations on line i to be closed in month
j for maintenance (renovation)
8Problem Find a schedule of maintenance
in k months
Schedule V1,,Vk Vj stations renovated
in month j
N.B. If no two adjacent stations closed the
same month
?(G,k,P,H)
proper coloring!
93. Some solvable cases
special family P (Pi i 1,,p) P nested
? Pr, Ps in P Pr ? Ps or Ps ? Pr
or Pr n Ps ØNesticity Nest (P) min number
of nested families
covering P
? polynomial algorithm to find whether Nest (P)
2
10?(G, k 2, P, H) is easy if Nest (P) 2
V 1 2 3 4 5 6 7P (12, 345, 67,
13567, 136, 24, 57)
Compatible flow from a to bgives V1 V2 V V1
N.B. NP-complete if Nest (P) 3
11Cover index of Pc(P) max nb of Pis covering
a vertex
?(G,k 2, P, H) easy if c (P) 2
b-matching in GPi has degree hi1
12If G is a tree with oriented arcs Pi ?
P oriented paththen ?(G, k 2, P, H) is
polynomially solvable
N.B. G need not be anarborescence (rooted tree)
Solution LP with totally unimodular matrix
If G is any graph and Pi ? 2 ? Pi ? P
then ?(G, k, P, H) is polynomially solvable
N.B. ?(G, k 3, P, H) NP-complete if Pi
3 ? Pi ? P, c(P) 2, hij 1 ? i,j
13 V1 x x true 2 SAT
V2 x x false
14If G is a tree and Pi n Pf ? 1 ? i
?fthen ?(G, k, P, H) is polynomially solvable
Propagation algorithm
For proper colorings
15(No Transcript)
16?(G, k 3, P, H) is NP-complete if G
graph with vertex v2 G v2 is bipartite
and Pi ? 3 ? i Pi n Pf ? 1 ? i ?f
175. Variations and extensions
?(G, k, P, H) find E1, E2,,Ek (partition of
E) with Ej n Pi hij ? i,
j
?(G, k, P, H) same with proper edge k-coloring
18?(G, k, P, H) with Pi ? 2 ?i is polynomially
solvable
?(G, k 2, P, H) NP-complete with G tree with
?(T) 3 and Pi chain or bundle of edges
?(G, k 2, P, H) NP-complete if G triangulated
cactus with ?(G) 3 and Pi chain ? i
196. No conclusion
Further research is needed
special classes of graphs grid graphs
close to tomography!