Normal Distribution - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

Normal Distribution

Description:

Normal Distribution. Normal Distribution (Gaussian) x = -5:0.01:5; y ... Bivariate Gaussian (d=2) Bivariate Gaussian (d=2) x1 = -3:0.1:3; x2 = -3:0.1:3; ... – PowerPoint PPT presentation

Number of Views:49
Avg rating:3.0/5.0
Slides: 19
Provided by: doi73
Category:

less

Transcript and Presenter's Notes

Title: Normal Distribution


1
Normal Distribution
2
Normal Distribution (Gaussian)
  • x -50.015
  • y normpdf(x,-2,sqrt(0.5))
  • plot(x,y,'m')
  • Warning normpdf uses N(ยต,s)

3
Normal Distribution (cont.)
68
cutoffnorminv(0.16 0.84, 0, sqrt(1)) xlo
cutoff(1), x(cutoff(1)ltxltcutoff(2)),
cutoff(2) ylo 0, y(cutoff(1)ltx
xltcutoff(2)), 0 patch(xlo,ylo,'r','FaceAlpha',0.
2')
95
99.7
4
Why should we care?
likelihood
prior
posterior
5
Why should we care? (cont.)
p1 normpdf(5,4,sqrt(1)) p2
normpdf(5,7,sqrt(0.5))
p1 normpdf(5,4,sqrt(1)) 0.2 p2
normpdf(5,7,sqrt(0.5)) 0.8
6
Joint Gaussian Distribution
7
Bivariate Gaussian (d2)
8
Bivariate Gaussian (d2)
x1 -30.13 x2 -30.13 F mvnpdf(X1()
X2(),mu,sigma) mesh(x1,x2,F) contour(x1,x2,F)
N 1000 y mvnrnd(mu, sigma,
N) plot(y(,1),y(,2), '.')
9
Bivariate Gaussian (d2)
10
Bivariate Gaussian (d2)
11
Why should we care?
load vowels.mat Pa Na/N mu_a mean(a) sigma_a
cov(a) x 400, 1000 logP_ax
log(mvnpdf(x,mu_a,sigma_a)) log(Pa)
12
Some Gaussian Tricks
1) Gaussian Marginals are Gaussian
13
Some Gaussian Tricks
2) Conditional of Gaussian is Gaussian
curve
area
normalization
14
Some Gaussian Tricks
3) Sum of independend Gaussian is Gausian
15
Some Gaussian Tricks
4) Uncorellatedness implies independence (for
joint Gaussian only)
16
Some Gaussian Tricks
17
Some Gaussian Tricks
18
Central Limit Theorem
Sum of N dies
Write a Comment
User Comments (0)
About PowerShow.com