Title: Normal Distribution
1Normal Distribution
2Normal Distribution (Gaussian)
- x -50.015
- y normpdf(x,-2,sqrt(0.5))
- plot(x,y,'m')
- Warning normpdf uses N(ยต,s)
3Normal Distribution (cont.)
68
cutoffnorminv(0.16 0.84, 0, sqrt(1)) xlo
cutoff(1), x(cutoff(1)ltxltcutoff(2)),
cutoff(2) ylo 0, y(cutoff(1)ltx
xltcutoff(2)), 0 patch(xlo,ylo,'r','FaceAlpha',0.
2')
95
99.7
4Why should we care?
likelihood
prior
posterior
5Why should we care? (cont.)
p1 normpdf(5,4,sqrt(1)) p2
normpdf(5,7,sqrt(0.5))
p1 normpdf(5,4,sqrt(1)) 0.2 p2
normpdf(5,7,sqrt(0.5)) 0.8
6Joint Gaussian Distribution
7Bivariate Gaussian (d2)
8Bivariate Gaussian (d2)
x1 -30.13 x2 -30.13 F mvnpdf(X1()
X2(),mu,sigma) mesh(x1,x2,F) contour(x1,x2,F)
N 1000 y mvnrnd(mu, sigma,
N) plot(y(,1),y(,2), '.')
9Bivariate Gaussian (d2)
10Bivariate Gaussian (d2)
11Why should we care?
load vowels.mat Pa Na/N mu_a mean(a) sigma_a
cov(a) x 400, 1000 logP_ax
log(mvnpdf(x,mu_a,sigma_a)) log(Pa)
12Some Gaussian Tricks
1) Gaussian Marginals are Gaussian
13Some Gaussian Tricks
2) Conditional of Gaussian is Gaussian
curve
area
normalization
14Some Gaussian Tricks
3) Sum of independend Gaussian is Gausian
15Some Gaussian Tricks
4) Uncorellatedness implies independence (for
joint Gaussian only)
16Some Gaussian Tricks
17Some Gaussian Tricks
18Central Limit Theorem
Sum of N dies