Face Transfer with Multilinear Models - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Face Transfer with Multilinear Models

Description:

PCA = Find Cov(A) = (AAT)/(n-1) AAT = eDeT = U = e. In data ... Maximum A Posteriori (MAP) estimation failed. Probability Principle Component Analysis (PPCA) ... – PowerPoint PPT presentation

Number of Views:84
Avg rating:3.0/5.0
Slides: 26
Provided by: Jon86
Category:

less

Transcript and Presenter's Notes

Title: Face Transfer with Multilinear Models


1
Face Transfer with Multilinear Models
  • Daniel Vlasic Jovan Popovic
  • CSAIL MIT
  • Matthew Brand Hanspeter Pfister
  • MERL

2
Outline
  • Introduction to Multilinear Model
  • Multilinear Face Model
  • Face Transfer

3
A
I2
X1
X2
X1-X2
X1
X2
B
I1
Y1
Y2
Y1-Y2
Y1
Y2
X1-Y1
X2-Y2
(X1-Y1) (X2-Y2)
X1
X2
1
0
X1
X2
Y1
Y2

1
0
x
Y1
Y2
1
-1
X1-Y1
X2-Y2
U(1)
A (U(2)x(U(1)xB)T)T
1
0
X1
Y1
X1-Y1
AT
1
0
x

A B x1U(1) x2 U(2)
X2
Y2
X2-Y2
1
-1
U(2)
4
Linear Model
J2
U(2)
I1
J2
A
I1
U(1)
I2
J1

B
I1
J1
5
Multilinear Model
  • Generalization of linear model
  • A B x1U(1)x2U(2)x3U(3)xnU(n)xNU(N)

Orthogonal Transformation
Data Tensor
Core Tensor
6
How to Multiply?
  • A B x1 U(1)x2 U(2)x3 U(3)xn U(n)
  • B xn U(n) U(n) B(n)

I2
Tensor Flattening
X1
X2
B
I1
A B x1U(1) x2 U(2)
Y1
Y2
7
Tensor Flattening
8
Example
0
0
A(1)
A
2
4
1
1
0
2
2
0
2
4
1
-1
2
2
-2
4
1
2
2
0
2
4
0
4
-1
-2
0
0
1
2
1
2
2
4
9
Face in Multilinear Model
Data Tensor
10
Mathematically
?
Data Tensor
Left Singular of SVD
In data reduction, we use PCA as Y eTX
  • SVD gt A USVT
  • AAT USVT(USVT)T USVT ((VT)TSUT) US2UT
  • PCA gt Find Cov(A) (AAT)/(n-1)
  • AAT eDeT gt U e

11
SVD for Multilinear Model
  • To find Un, perform SVD on mode n space of the
    data tensor, i.e., J(n)
  • This is not optimal, however, and they use ALS,
    or Alternating Least Square
  • A lot of SIAM papers address this topic, and out
    of our scope

12
Mathematically Again
13
Multilinear Face Model
  • Bilinear Model (3-mode)
  • 30K vertices x 10 expression x 15 identities
  • Trilinear Model (4-mode)
  • 5 visemes

Multilinear model of face geometry
14
Arbitrary Interpolation
n
Synthesized Data, f
1

n
Original Data, M
m
Weighting, w
m rows data
1
x
f M x2 w(2)
15
Interpolation in Multilinear Model
F M x2 w(2)
Multilinear model of face geometry
f M x2 w(2) x3 w(3) x4 w(4) . xN w(N)
16
Missing Data
  • So far, we dealt with perfect data set
  • In practice NOT the case
  • Maximum A Posteriori (MAP) estimation failed
  • Probability Principle Component Analysis (PPCA)

17
Short Review on PPCA
  • t Wx µ e
  • x is N(0, I) , eis isotropic error N(0, s2I)
  • So t is N(µ, WWT s2I)
  • Given t, we want to estimate W, s
  • Maximize the likelihood function L p(t)
    ?ip(ti x,W)

18
Short Review on PPCA
  • Maximum Likelihood Estimators (M.L.E) tells us
    that, by taking log-likelihood
  • WML Uq(?q s2I)1/2R
  • sML 1/(d-q) Sj q1 to d?j
  • Uq is eigen-vector and ?q eigen-value
  • --------------------------------------------------
    -----
  • End of review

19
Probabilistic Face Model
t Wx µ e
Likelihood Function
p(t x,W)
20
Missing Data
Tj mode-j of J
gt
Jj mode-j of Mx2U(2)xj-1U(j-1) xj1U(j1)
..xn U(n)
21
Face Tracking
  • Kanade-Lucas-Tomasi (KLT) algorithm
  • Zd Z(p p0) e
  • Z(sR fi t - po) e for vertex i
  • Z(sR Mm,iwm t p0) e

22
Comparison
23
Result
24
(No Transcript)
25
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com