Calibration Issues - PowerPoint PPT Presentation

1 / 32
About This Presentation
Title:

Calibration Issues

Description:

Epipolar geometry F, E. Interior camera parameters K. Exterior camera ... 'chromatic aberration' Institut f r Elektrische Me technik und Me signalverarbeitung ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 33
Provided by: zid5
Category:

less

Transcript and Presenter's Notes

Title: Calibration Issues


1
Calibration Issues
  • Linear Models
  • Homography estimation H
  • Epipolar geometry F, E
  • Interior camera parameters K
  • Exterior camera parameters R,t
  • Camera pose R,t
  • Interest Point Detection Description
  • Algorithms
  • Overdetermined systems of linear equations ?
    Error Minimization
  • Direct Linear Transform DLT
  • Normalization
  • Nonlinearities ? iterative error minimization,
    Levenberg-Marquardt
  • Outliers ? Robustness, RANSAC

2
Pinhole Camera
Z
X
p(x,y,1)
Ycam
R,t
Y
principal point (x0,y0)
p(x,y)
Xcam
Zcam
optical axis
Ccam
f
y
P(Xcam,Ycam,Zcam)
P(Xcam,Ycam,Zcam)
x
P(X,Y,Z,1)
P(X,Y,Z,1)
image plane pi (x,y) Zcam -f
focal length f
  • real camera
  • Pinhole C center of projection
  • interior camera parameters
  • x0, y0, f,
  • 2D projection ? 3D scene
  • exterior parameters
  • camera pose
  • R, t
  • p(x,y) ? line of sight viewing direction

3
Pinhole Camera
Z
X
R,t
Ycam
Y
principal point (x0,y0)
p(x,y,1)
Xcam
Zcam
optical axis
Ccam
f
y
P(X,Y,Z,1)
x
P(X,Y,Z,1)
image plane pi (x,y) Zcam -f
P 3 x 4 matrix camera projection
matrix Pollefeys p.24, eq. (3.8)
4
The Basic Pinhole Model
inhomog. coord.
homog. coord.
  • ? Note Figures taken from, notation following
    Hartley,Zisserman

5
The Basic Pinhole Model
6
Principal Point Offset
7
Principal Point Offset
camera calibration matrix interior/internal
parameters interior/internal orientation
8
Camera Rotation and Translation
3 x 4 P2
P3
4 x 4 P3
P3
9
Camera Rotation and Translation
3 x 4 projection matrix P 9 degrees of freedom
3 internal parameters in K 3 rotation angles in
R 3 translations in C

10
Camera Rotation and Translation
Simplified notation avoid explicit modeling of C
11
From Pinhole ? Real Cameras K
3 x R, 3 x t
  • Pinhole
  • 3 parameters in K
  • CCD
  • 4 parameters
  • Finite projective camera
  • 5 parameters
  • skew s

9
10
my
mx
11
12
Projective Camera
But We model real cameras as finite projective
cameras ( lens distortion)
  • Finite projective camera
  • K is an upper triangular matrix
  • KR is non-singular
  • General projective camera
  • P is an arbitrary 3 x 4 matrix of rank 3
  • P has also 11 degrees of freedom

13
Camera Calibration in Practice (1)
  • Take
  • 1 picture of a 3D calibration target,
  • or several pictures of a planar calibration
    target
  • (take care so that all parameters can be
    recovered !)
  • Establish point correspondences
  • Calculate P
  • set of linear equations
  • Decompose P

14
3D Targets
Hartley Zisserman
Heikkilä
  • Many ways to build
  • Corners vs. circles (center of gravity)
  • Precision of building, attaching,
  • CNC measured points
  • EMT coordinate measurement machine

Photogrammetry Godding / Jähne
15
2D vs. 3D Targets
f 28mm, z 300mm
f 50mm, z 470mm
f 84mm, z 720mm
16
2D Targets
f 28mm, z 280mm
f 50mm, z 470mm
f 84mm, z 720mm
  • arbitrary scaling !
  • z/f const.
  • closeup of toy car vs. real car at a distance
  • but subtle differences in image quality !

17
Image Quality (1)
f 28mm, z 280mm
f 50mm, z 470mm
? lens distortion !
18
Image Quality (2)
f 28mm, z 280mm
f 50mm, z 470mm
? chromatic aberration
19
Lens Distortion Model
  • Several ways to model
  • Most common
  • Radial lens distortion ki
  • Tangential lens distortion tj
  • Radial gtgt tangential
  • Polynomial approximation up to varying order

r
(x0,y0)
y
x
20
Camera Calibration in Practice (2)
  • Take
  • 1 picture of a 3D calibration target,
  • or several pictures of a planar calibration
    target
  • Establish point correspondences
  • Calculate P
  • set of linear equations
  • Decompose P

A first estimate for linear Interior parameters
(K)
  • Add nonlinear relationships (model ki, tj)
  • Perform iterative optimization (w.r.t. some
    error)
  • Enforce constraints (such as structure of K and
    R)

21
More Matrices
  • Homography H
  • Projection P (K, R, t )
  • Multiple views
  • Epipolar geometry
  • Uncalibrated stereo Fundamental matrix F
  • Calibrated stereo Essential matrix E
  • Stereo rig
  • Camera motion ? many views ? AR tracking

22
Epipolar Geometry (1)
  • Figures from Hartley Zisserman
  • C, C, x, x, X are co-planar (lie in the
    epipolar plane p)

23
Epipolar Geometry (2)
  • Assume that only C, C, and x are known

24
Epipolar Geometry (3)
C
C
  • p projects on epipolar lines l and l
  • baseline connects C, C
  • epipoles e, e

25
Epipolar Geometry (4)
C
C
  • When 3D position of X varies, p rotates about
    the baseline
  • Family of planes epipolar pencil
    Ebenenbüschel

26
Epipolar Geometry Example 1Converging Cameras
HartleyZisserman
27
Epipolar Geometry Example 2Forward
Translation HartleyZisserman, Pollefeys
e
e
28
The Fundamental Matrix F (1)
We had an example Homography H
29
The Fundamental Matrix F (2)
skew-symmetric matrix
  • Transfer xi via Xi in p to xi
  • 2D homography Hp maps each xi to xi

30
The Fundamental Matrix F (3)
  • F relates x in one image with its corresponding
    epipolar line l in the other image (all X in R3
    !)
  • The corresponding point x must lie on l
  • This relates to
  • How to estimate F?

? Point correspondences
31
Calibration Issues
  • Linear Models
  • Homography estimation H
  • Epipolar geometry F, E
  • Interior camera parameters K
  • Exterior camera parameters R,t
  • Camera pose R,t
  • Interest Point Detection Description
  • Algorithms
  • Overdetermined systems of linear equations ?
    Error Minimization
  • Direct Linear Transform DLT
  • Normalization
  • Nonlinearities ? iterative error minimization,
    Levenberg-Marquardt
  • Outliers ? Robustness, RANSAC

32
A final word on E
  • Essential matrix E
  • Similar to F
  • Relates calibrated stereo rig
  • Internal matrices K and K are known

R, t
normalized coordinates
Write a Comment
User Comments (0)
About PowerShow.com