Title: Calibration Issues
1Calibration Issues
- Linear Models
- Homography estimation H
- Epipolar geometry F, E
- Interior camera parameters K
- Exterior camera parameters R,t
- Camera pose R,t
- Interest Point Detection Description
- Algorithms
- Overdetermined systems of linear equations ?
Error Minimization - Direct Linear Transform DLT
- Normalization
- Nonlinearities ? iterative error minimization,
Levenberg-Marquardt - Outliers ? Robustness, RANSAC
2Pinhole Camera
Z
X
p(x,y,1)
Ycam
R,t
Y
principal point (x0,y0)
p(x,y)
Xcam
Zcam
optical axis
Ccam
f
y
P(Xcam,Ycam,Zcam)
P(Xcam,Ycam,Zcam)
x
P(X,Y,Z,1)
P(X,Y,Z,1)
image plane pi (x,y) Zcam -f
focal length f
- Pinhole C center of projection
- interior camera parameters
- x0, y0, f,
- exterior parameters
- camera pose
- R, t
- p(x,y) ? line of sight viewing direction
3Pinhole Camera
Z
X
R,t
Ycam
Y
principal point (x0,y0)
p(x,y,1)
Xcam
Zcam
optical axis
Ccam
f
y
P(X,Y,Z,1)
x
P(X,Y,Z,1)
image plane pi (x,y) Zcam -f
P 3 x 4 matrix camera projection
matrix Pollefeys p.24, eq. (3.8)
4The Basic Pinhole Model
inhomog. coord.
homog. coord.
- ? Note Figures taken from, notation following
Hartley,Zisserman
5The Basic Pinhole Model
6Principal Point Offset
7Principal Point Offset
camera calibration matrix interior/internal
parameters interior/internal orientation
8Camera Rotation and Translation
3 x 4 P2
P3
4 x 4 P3
P3
9Camera Rotation and Translation
3 x 4 projection matrix P 9 degrees of freedom
3 internal parameters in K 3 rotation angles in
R 3 translations in C
10Camera Rotation and Translation
Simplified notation avoid explicit modeling of C
11From Pinhole ? Real Cameras K
3 x R, 3 x t
- Pinhole
- 3 parameters in K
- CCD
- 4 parameters
- Finite projective camera
- 5 parameters
- skew s
9
10
my
mx
11
12Projective Camera
But We model real cameras as finite projective
cameras ( lens distortion)
- Finite projective camera
- K is an upper triangular matrix
- KR is non-singular
- General projective camera
- P is an arbitrary 3 x 4 matrix of rank 3
- P has also 11 degrees of freedom
13Camera Calibration in Practice (1)
- Take
- 1 picture of a 3D calibration target,
- or several pictures of a planar calibration
target - (take care so that all parameters can be
recovered !) - Establish point correspondences
- Calculate P
- set of linear equations
- Decompose P
143D Targets
Hartley Zisserman
Heikkilä
- Many ways to build
- Corners vs. circles (center of gravity)
- Precision of building, attaching,
- CNC measured points
- EMT coordinate measurement machine
Photogrammetry Godding / Jähne
152D vs. 3D Targets
f 28mm, z 300mm
f 50mm, z 470mm
f 84mm, z 720mm
162D Targets
f 28mm, z 280mm
f 50mm, z 470mm
f 84mm, z 720mm
- arbitrary scaling !
- z/f const.
- closeup of toy car vs. real car at a distance
- but subtle differences in image quality !
17Image Quality (1)
f 28mm, z 280mm
f 50mm, z 470mm
? lens distortion !
18Image Quality (2)
f 28mm, z 280mm
f 50mm, z 470mm
? chromatic aberration
19Lens Distortion Model
- Several ways to model
- Most common
- Radial lens distortion ki
- Tangential lens distortion tj
- Radial gtgt tangential
- Polynomial approximation up to varying order
r
(x0,y0)
y
x
20Camera Calibration in Practice (2)
- Take
- 1 picture of a 3D calibration target,
- or several pictures of a planar calibration
target - Establish point correspondences
- Calculate P
- set of linear equations
- Decompose P
A first estimate for linear Interior parameters
(K)
- Add nonlinear relationships (model ki, tj)
- Perform iterative optimization (w.r.t. some
error) - Enforce constraints (such as structure of K and
R)
21More Matrices
- Homography H
- Projection P (K, R, t )
- Multiple views
- Epipolar geometry
- Uncalibrated stereo Fundamental matrix F
- Calibrated stereo Essential matrix E
- Stereo rig
- Camera motion ? many views ? AR tracking
22Epipolar Geometry (1)
- Figures from Hartley Zisserman
- C, C, x, x, X are co-planar (lie in the
epipolar plane p)
23Epipolar Geometry (2)
- Assume that only C, C, and x are known
24Epipolar Geometry (3)
C
C
- p projects on epipolar lines l and l
- baseline connects C, C
- epipoles e, e
25Epipolar Geometry (4)
C
C
- When 3D position of X varies, p rotates about
the baseline - Family of planes epipolar pencil
Ebenenbüschel
26Epipolar Geometry Example 1Converging Cameras
HartleyZisserman
27Epipolar Geometry Example 2Forward
Translation HartleyZisserman, Pollefeys
e
e
28The Fundamental Matrix F (1)
We had an example Homography H
29The Fundamental Matrix F (2)
skew-symmetric matrix
- Transfer xi via Xi in p to xi
- 2D homography Hp maps each xi to xi
30The Fundamental Matrix F (3)
- F relates x in one image with its corresponding
epipolar line l in the other image (all X in R3
!) - The corresponding point x must lie on l
- This relates to
- How to estimate F?
? Point correspondences
31Calibration Issues
- Linear Models
- Homography estimation H
- Epipolar geometry F, E
- Interior camera parameters K
- Exterior camera parameters R,t
- Camera pose R,t
- Interest Point Detection Description
- Algorithms
- Overdetermined systems of linear equations ?
Error Minimization - Direct Linear Transform DLT
- Normalization
- Nonlinearities ? iterative error minimization,
Levenberg-Marquardt - Outliers ? Robustness, RANSAC
32A final word on E
- Essential matrix E
- Similar to F
- Relates calibrated stereo rig
- Internal matrices K and K are known
R, t
normalized coordinates