Agent-Centered Search - PowerPoint PPT Presentation

About This Presentation
Title:

Agent-Centered Search

Description:

Setting: mobile agent (robot) in an known/unknown environment ... Agent must act in real time. Results: Shorter. planning. Longer. execution (path not. optimal) ... – PowerPoint PPT presentation

Number of Views:13
Avg rating:3.0/5.0
Slides: 53
Provided by: mitjal
Category:

less

Transcript and Presenter's Notes

Title: Agent-Centered Search


1
Agent-Centered Search
  • Mitja Luštrek
  • Jožef Stefan Institute
  • Department of Intelligent Systems

2
Introduction
  • Setting mobile agent (robot) in an known/unknown
    environment (labyrinth with/without map)
  • Objective to reach the goal from the starting
    position in as short time as possible
  • Two phases
  • Planning of the path
  • Execution of the plan
  • Traditional search first planning of the whole
    path, then execution of the plan
  • Agent-centered search planning of the beginning
    of the path from the starting position, execution
    of the partial plan, planning from the new
    starting position...

3
Why Agent-Centered Search
  • Planning long in comparison to execution
  • Environment very large
  • Environment not wholly known
  • Environment changing
  • Agent must act in real time
  • Results
  • Shorterplanning
  • Longerexecution(path notoptimal)
  • Shortersum

4
Traditional Search A
  • Multiple paths from the starting position
  • Agent keeps expanding the most promising path
    until the goal is reached
  • Evaluation function for path ending in position
    n
  • f (n) g (n) h (n)
  • g (n) ... the length of the shortest path found
    so far from the starting position to n
  • h (n) ... heuristic evaluation of the length of
    the shortest path from n to the goal
  • If h (n) is admissible (optimistic always
    smaller or equal to the length of the shortest
    path from n to the goal), A finds the shortest
    path

5
A Example
  • The agents environment is divided into squares,
    some of them impassable
  • The agent can move up, down, left and right
  • The distance between adjacent squares is 1
  • h (n) is the Manhattan distance from n to the
    goal

6
A Example
4 3 2 1 0 GOAL
5 START 4 3 2 1
6 5 4 3 2
7 6 5 4 3
8 7 6 5 4
7
A Example
41 3 2 1 0 GOAL
5 START 4 3 2 1
61 5 4 3 2
7 6 5 4 3
8 7 6 5 4
8
A Example
41 32 2 1 0 GOAL
5 START 4 3 2 1
61 5 4 3 2
7 6 5 4 3
8 7 6 5 4
9
A Example
41 32 23 1 0 GOAL
5 START 4 3 2 1
61 5 4 3 2
7 6 5 4 3
8 7 6 5 4
10
A Example
41 32 23 1 0 GOAL
5 START 4 34 2 1
61 5 4 3 2
7 6 5 4 3
8 7 6 5 4
11
A Example
41 32 23 1 0 GOAL
5 START 4 34 2 1
61 5 45 3 2
7 6 5 4 3
8 7 6 5 4
12
A Example
41 32 23 1 0 GOAL
5 START 4 34 2 1
61 5 45 3 2
72 6 5 4 3
8 7 6 5 4
13
A Example
41 32 23 1 0 GOAL
5 START 4 34 2 1
61 5 45 3 2
72 6 5 4 3
83 7 6 5 4
14
A Example
41 32 23 1 0 GOAL
5 START 4 34 2 1
61 5 45 36 2
72 6 56 4 3
83 7 6 5 4
15
A Example
41 32 23 1 0 GOAL
5 START 4 34 2 1
61 5 45 36 27
72 6 56 47 3
83 7 6 5 4
16
A Example
41 32 23 1 0 GOAL
5 START 4 34 2 18
61 5 45 36 27
72 6 56 47 38
83 7 6 5 4
17
A Example
41 32 23 1 09 GOAL
5 START 4 34 2 18
61 5 45 36 27
72 6 56 47 38
83 7 6 5 4
18
A Example
41 32 23 1 09 GOAL
5 START 4 34 2 18
61 5 45 36 27
72 6 56 47 38
83 7 6 5 4
19
A Example
41 32 23 1 09 GOAL
5 START 4 34 2 18
61 5 45 36 27
72 6 56 47 38
83 7 6 5 4
20
Agent-Centered Search
  • Agent searches local search space, which is a
    part of the whole space centered on the agent
  • Makes some steps in the most promising direction
  • Repeats until it reaches the goal
  • In game playing (chess), the search is performed
    around the current position
  • The whole game tree is too large (environment
    very large)
  • The opponents moves are not known in advance
    (environment not wholly known)
  • This is an example of two-agent search, we focus
    on single-agent search.

21
LRTA
  • Learning real-time A
  • Agent updates h (l) for every point l in the
    local search spaceh (l) min (d (l, n) h
    (n))
  • d (l, n) ... the length of the shortest path from
    l to a point n just outside the local search
    space
  • h (n) ... heuristic evaluation of the length of
    the shortest path from n to the goal
  • Moves to the adjacent position l with the lowest
    h (l).
  • Repeats until the goal is reached.
  • Updated h (l) can be used in later searches.

22
LRTA Example
  • Same setting as for A.
  • The local search space is 3 x 3 squares centered
    on the agent.

23
LRTA Example
4 START 3 2 1 0 GOAL
5 4 3 2 1
6 5 4 3 2
7 6 5 4 3
8 7 6 5 4
24
LRTA Example
4 START 3 2 1 0 GOAL
5 4 3 2 1
6 5 4 3 2
7 6 5 4 3
8 7 6 5 4
25
LRTA Example
8 START 7 6 1 0 GOAL
7 6 5 2 1
6 5 4 3 2
7 6 5 4 3
8 7 6 5 4
26
LRTA Example
10 START 11 12 1 0 GOAL
9 10 11 2 1
8 9 10 3 2
7 6 5 4 3
8 7 6 5 4
27
LRTA Example
10 START 11 12 1 0 GOAL
9 10 11 2 1
8 9 10 3 2
7 6 5 4 3
8 7 6 5 4
28
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
29
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
30
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
31
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
32
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
33
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
34
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
35
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
36
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
37
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
38
LRTA Example
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
39
LRTA Example, search restarted
10 START 11 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
40
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
41
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
42
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
43
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
44
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
45
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
46
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
47
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
48
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
49
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
50
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
51
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
52
LRTA Example, search restarted
10 START 13 12 1 0 GOAL
11 12 11 2 1
10 11 10 3 2
9 6 5 4 3
8 7 6 5 4
Write a Comment
User Comments (0)
About PowerShow.com