Star Formation and Millimetre Astronomy Michael Burton School of Physics University of New South Wales - PowerPoint PPT Presentation

About This Presentation
Title:

Star Formation and Millimetre Astronomy Michael Burton School of Physics University of New South Wales

Description:

Star Formation and Millimetre Astronomy Michael Burton School of Physics University of New South Wal – PowerPoint PPT presentation

Number of Views:65
Avg rating:3.0/5.0
Slides: 48
Provided by: michael184
Category:

less

Transcript and Presenter's Notes

Title: Star Formation and Millimetre Astronomy Michael Burton School of Physics University of New South Wales


1
Star FormationandMillimetre AstronomyMichael
BurtonSchool of PhysicsUniversity of New South
Wales
2
Outline
  • Millimetre Science
  • Star formation

3
Millimetre Science
  • Star Formation
  • Dense Cores, Cloud collapse, molecular outflows
  • Interstellar Medium
  • Multi-phase medium (ionized, neutral, molecular)
  • Chemistry
  • Ion Molecule reactions, despite the low
    abundances
  • No 3-body reactions, No activation energies
  • Grain surface chemistry
  • Galaxies
  • All applies to other galaxies too!
  • Red-shifted molecular gas
  • CMBR
  • Peaks at 1mm

4
The 3mm Millimetre Spectrum
5
125 Interstellar Molecules (August 2004)
wwwusr.obspm.fr/departement/demirm/list-mol.html
6
Some Interesting MoleculesLeiden Astrochemistry
Groupwww.strw.leidenuniv.nl/astrochem
C3H2
Ethanol CH3CH2OH
Formaldehyde H2CO
Hydrogen Cyanide HCN
HC7N
PAH
7
Evolution of Dense Cores (I)
Thanks Maria!
8
Evolution of Dense Cores (II)
9
(No Transcript)
10
Star Formation
  • Molecular Clouds to Stars
  • Forging of the Elements
  • Stars to Gas to Dust to Stars
  • Driven by the Massive Stars

11
The Multi-Wavelength Milky Way
Sites of Massive Star Formation
12
(No Transcript)
13
Millimetre Wavelength Molecular Lines in Orion
14
Birth of the Solar System
  • Collapse of a slowly rotating cloud of
    interstellar gas.
  • Central condensation forms as clouds flattens and
    spins up.
  • Young Sun shines within disk of gas and dust, in
    which planets are forming.

15
Stardust the seeds for planets!
0.02 mm
Cosmic Dust Grain
Chondrules inside a meteorite
16
Leonids
Geminids
Cosmic Dust stardust.wustl.edu
17
Formation of the PlanetsI Protoplanetary Cloud
(0 years)
18
Formation of the Planets II Planetesimals (50
million yrs)
19
Formation of the Planets III Planets (100
million years)
20
Numerical simulation of the Birth of the Solar
System
21
Low Mass Star Formation
T 10K nH2 106 cm-3 B 10-6 G
22
Low Mass Star Formation
Class 0
Core
I
Flux
Star Disk
II
Star
III
The Stages of LMSF are understood (sort of)!
?
23
The Stages of LMSF and its Chemistry
  1. Core Contracts
  2. Inside-out collapse
  3. Accretion Outflow
  4. Proto-planetary Disk
  5. Planetary System

Hogerheijde, after Shu 1987
24
The Evolutionary Route to Massive Star Formation
Polyaromatic Hydrocarbons (PAHs _at_ 3.3µm)
Optical HII regionevolved star formation
25
HII Regions and Molecular Cores
26
Hot Molecular Cores
105 yr
Purcell
  • Dense (n 106-7 cm-3), Warm (T 100300K),
    Compact (R 0.1 pc) phase at start of MSF
  • Contains an embedded protostellar source
  • Characterised by a rich chemistry
  • High abundance of saturated hydrocarbons, fuelled
    by evaporation from grain mantles

Evidence for signatures of these phases?
27
Three Phases of Hot Core Chemistry
  • Cold Core chemistry, frozen onto grains as ices
    (e.g. CO)
  • Grain surface chemistry (e.g. NH3, CH3OH)
  • Desorbed as core heats up
  • Gas Phase chemistry in hot core (e.g. CH3CN)

28
Time-dependent Chemical Signatures?
N-rich or C-rich?
  • Need to constrain the chemistry with
    observations!
  • Need to understand how the chemistry works!

100 K
300 K
Abundance
Time
Rodgers Charnley, 2001
Ammonia injected from ice
29
Hot Molecular Cores 86-92 GHz Line Survey of
G0.55-0.85
SiO
HNC
C2H
HC3N
CH3CN
Rich Organic Spectrum HCO, HCN, HNC, CH3CN,
C2H, HC3N, SiO
HCN
HCO
Mopra
Kim et al. 2002
30
Hot Molecular CoresMethyl Cyanide (CH3CN)
G0.55-0.85
Mopra
31
16272-4837 1.2-mm SIMBA emission
  • Spectral Energy Distribution
  • L 2.4 x 104 L?

0.4 pc at 3.4 kpc
  • Optically Thin Dust
  • M F ? D2 / Rdg ? B?(Td)
  • M 2.0 x 103 M?

30?
Brooks et al, 2002
32
Cold Cores1.2mm Continuum, SEST/SIMBA
CH3CN
HCN
HCO
CH3OH
Minier et al, 2003
33
Delta Quadrant Survey (aka RCW106,
G333.6-0.2)1.2x0.6 at (l,b)(333.2,-0.4)
MSX 8µm SIMBA 1.2mm MOST 843MHz
Mopra 13CO
34
The Search for Biogenic Molecules
  • Propylene Oxide (86 GHz)
  • Chiral-centred molecule
  • Needed for self-replication, eg RNA
  • Production mechanism (circularly polarized UV)
  • But no chiral molecules yet seen in the ISM?
  • Glycine (87 GHz)
  • Simplest amino acid
  • Found in carbonaceous chondrites (pre-solar
    nebula)
  • Why now?
  • Accurate wavelengths now available
  • Many lines needed to confirm detection
  • Requires large collecting area and long
    observations

35
(No Transcript)
36
Mopra
  • 22-m Telescope for ? gt 3mm
  • 85115 GHz receiver (2.6 3.5 mm)
  • 30 beam, Tsys 150 300 K
  • Bandwidth 64, 128 or 256 MHz (200 - 800 km/s)
  • 1024 Channels (0.2 - 0.8 km/s per channel)
  • 2 Polarizations (1 freq., or 1 pol. SiO 86 GHz)
  • Must Nod No chopping.
  • Upgrade to 8 GHz, 16,000 channel system in
    progress

37
Your local radio telescopes.
38
The Australia TelescopeMillimetre Interferometer
39
Australia Telescope Compact Array
  • National Facility
  • Six 22m antennas
  • Five on movable 3km EW track
  • Built for 110 GHz operation
  • Recently upgraded to 3mm (100 GHz) 12mm (25
    GHz)
  • Provision for 7mm (45 GHz) upgrade
  • Focal Plane Arrays.

40
MillimetreInterferometry
R Sault
  • Poses special challenges
  • Significant atmospheric opacity, mostly due to
    H2O
  • Fluctuations in H2O produce phase shifts
  • These increase with both baseline and frequency
  • Instrumental requirements (e.g. surface,
    pointing, baseline accuracy) are more severe
  • Need more bandwidth to cover same velocity range
    (1 MHz ? ? (mm) km/s)

Desai 1998
41
Some Millimetre Telescopes
  • SEST
  • FCRAO
  • LMT
  • Nobeyama
  • Nobeyama MM Array
  • IRAM
  • Plateau du Bure
  • BIMA
  • OVRO
  • CARMA
  • CSO / JCMT / SMA
  • AST/RO / VIPER
  • SPT
  • NANTEN2
  • ASTE
  • APEX
  • ALMA

42
SEST 15m La Silla, ChileSwedish-European
Sub-millimetre Telescope
43
FCRAO 14mFive College Radio Astronomy
ObservatoryQuabbin, Massachusetts
44
The Large Millimetre TelescopeEl Gran Telescopio
Milimetrico50m, Sierra Negra, Puebla, Mexico
45
Nobeyama 45m TelescopeJapan
46
Nobeyama Millimetre Array ASTE Sub-millimetre
antenna
47
IRAM 30m, SpainInstitute de Radioastronomie
Millimetrique
48
Plateau de Bure Interferometer6x15m Antennae
49
BIMA, Hat Creek, California10x6m
AntennaeBerkley-Illinois-Maryland Array
50
Owens Valley Radio ObservatoryOVRO, 6x9m,
California
51
CARMACombined Array for Research Millimeter
AstronomyCedar Flat, Inyo Mountains,
California(6x9m OVRO 9x6m BIMA)
52
Mauna Kea, Hawaii Caltech Sub-Millimetre
Observatory (CSO), 10mJames Clerk Maxwell
Telescope (JCMT), 15mSub-Millimeter Array (SMA),
8x8m
53
AST/RO 1.7m Submm TelescopeSouth Pole
54
VIPER 2.1m Telescopeat the South Pole
55
10m South Pole Telescope
56
4m NANTEN2 AtacamaA University
CollaborationJapan - Korea - Germany - Chile -
Oz (?)
57
12m APEXAtacama Pathfinder Experiment
58
ALMAAtacama Large Millimetre Array
59
Antarctica??
Write a Comment
User Comments (0)
About PowerShow.com