Design and drawing of RC Structures CV61 - PowerPoint PPT Presentation

1 / 48
About This Presentation
Title:

Design and drawing of RC Structures CV61

Description:

Design the slab, portal frame and foundations and sketch the details of reinforcements. ... The reinforcement is computed using table 2 of SP16. 24. Step4: ... – PowerPoint PPT presentation

Number of Views:232
Avg rating:3.0/5.0
Slides: 49
Provided by: VTU1
Category:

less

Transcript and Presenter's Notes

Title: Design and drawing of RC Structures CV61


1
Design and drawing of RC StructuresCV61
Dr. G.S.Suresh Civil Engineering Department The
National Institute of Engineering Mysore-570
008 Mob 9342188467
Email gss_nie_at_yahoo.com
2
Portal frames
3
Learning out Come
  • Review of Design of Portal Frames
  • Design example Continued

4
  • INTRODUCTION
  • Step1 Design of slabs
  • Step2 Preliminary design of beams and columns
  • Step3 Analysis
  • Step4 Design of beams
  • Step5 Design of Columns
  • Step6 Design of footings

5
  • PROBLEM 2

6
  • PROBLEM 2

A portal frame hinged at base has following
data Spacing of portal frames 4m Height of
columns 4m Distance between column centers
10m Live load on roof 1.5 kN/m2 RCC slab
continuous over portal frames. Safe bearing
capacity of soil200 kN/m2 Adopt M-20 grade
concrete and Fe-415 steel. Design the slab,
portal frame and foundations and sketch the
details of reinforcements.
7
  • Data given
  • Spacing of frames 4m
  • Span of portal frame 10m
  • Height of columns 4m
  • Live load on roof 1.5 kN/m2
  • Concrete M20 grade
  • Steel Fe 415

8
(No Transcript)
9
(No Transcript)
10
  • Step1Design of slab
  • Assume over all depth of slab as 120mm and
    effective depth as 100mm
  • Self weight of slab 0.12 x 24 2.88 kN/m2
  • Weight of roof finish 0.50 kN/m2 (assumed)
  • Ceiling finish 0.25 kN/m2 (assumed)
  • Total dead load wd 3.63 kN/m2
  • Live load wL 1.50 kN/m2 (Given in the data)
  • Maximum service load moment at interior support
    8.5 kN-m

11
  • Step1Design of slab (Contd)
  • MulimQlimbd2 (Qlim2.76)
  • 2.76 x 1000 x 1002 / 1 x 106 27.6 kN-m gt
    12.75 kN-m
  • From table 2 of SP16 pt0.384 Ast(0.384 x 1000
    x 100)/100 384 mm2
  • Spacing of 10 mm dia bars (78.54 x 1000)/384
    204.5 mm c/c
  • Provide 10 _at_ 200 c/c

12
  • Step1Design of slab (Contd)
  • Area of distribution steel Adist0.12 x 1000 x
    120 / 100 144 mm2
  • Spacing of 8 mm dia bars (50.26 x 1000)/144
    349 mm c/c
  • Provide 8 _at_ 340 c/c. Main and dist.
    reinforcement in the slab is shown in Fig

13
Step1Design of slab (Contd)
14
  • Step2 Preliminary design of beams and columns
  • Beam
  • Effective span 10m
  • Effective depth based on deflection criteria
    10000/13 769.23mm
  • Assume over all depth as 750 mm with effective
    depth 700mm, breadth b 450mm and column
    section equal to 450 mm x 600 mm.

15
  • Step3 Analysis
  • Load on frame
  • i) Load from slab (3.631.5) x 4 20.52 kN/m
  • ii) Self weight of rib of beam 0.45x0.63x24
    6.80 kN/m
  • Total ? 28.00 kN/m
  • Height of beam above hinge 40.1-075/2 3.72 m
  • The portal frame subjected to the udl considered
    for analysis is shown in Fig. 6.10

16
Step3 Analysis (Contd.)
17
  • Step3Analysis(Contd)
  • The moments in the portal frame hinged at the
    base and loaded as shown in Fig. is analised by
    moment distribution
  • IAB 450 x 6003/12 81 x 108 mm4, IBC 450 x
    7503/12 158.2 x 108 mm4
  • Stiffness Factor
  • KBA IAB / LAB 21.77 x 105 KBC IBC
    / LBC 15.8 x 105

18
  • Step3Analysis(Contd)
  • Distribution Factors
  • Fixed End Moments
  • MFAB MFBA MFCD MFDC 0
  • MFBC --233 kN-m and MFCB 233 kN-m

19
  • Step3Analysis(Contd) Moment Distribution Table

20
  • Step3Analysis(Contd) Bending Moment diagram

21
  • Step3Analysis(Contd) Design moments
  • Service load end moments MB156 kN-m,
  • Design end moments MuB1.5 x 156 234 kN-m,
  • Service load mid span moment in beam 28x102/8
    102 194 kN-m
  • Design mid span moment Mu1.5 x 194 291 kN-m
  • Maximum Working shear force (at B or C) in beam
    0.5 x 28 x 10 140kN
  • Design shear force Vu 1.5 x 140 210 kN

22
  • Step4Design of beams
  • The beam of an intermediate portal frame is
    designed. The mid span section of this beam is
    designed as a T-beam and the beam section at the
    ends are designed as rectangular section.
  • Design of T-section for Mid Span
  • Design moment Mu291 kN-m
  • Flange width bf
  • Here Lo0.7 x L 0.7 x 10 7m
  • bf 7/60.456x0.122.33m

23
  • Step4Design of T-beam
  • bf/bw5.2 and Df /d 0.17 Referring to table 58
    of SP16, the moment resistance factor is given by
    KT0.43,
  • MulimKT bwd2 fck 0.43 x 450 x 7002 x 20/1x106
    1896.3 kN-m gt Mu Safe
  • The reinforcement is computed using table 2 of
    SP16

24
  • Step4Design of T- beam
  • Mu/bd2 291 x 106/(450x7002)?1.3 for this
    pt0.392
  • Ast0.392 x 450x700/100 1234.8 mm2
  • No of 20 mm dia bar 1234.8/(?x202/4) 3.93
  • Hence 4 Nos. of 20 at bottom in the mid span

25
  • Step4Design of Rectangular beam
  • Design moment MuB234 kN-m
  • MuB/bd2 234x106/450x7002 ?1.1 From table 2 of
    SP16 pt0.327
  • Ast0.327 x 450 x 700 / 100 1030
  • No of 20 mm dia bar 1030/(?x202/4) 3.2
  • Hence 4 Nos. of 20 at the top near the ends for
    a distance of o.25 L 2.5m from face of the
    column as shown in Fig

26

Step4Design of beams Long. Section
27

Step4Design of beams Cross-Section
28
  • Check for Shear
  • Nominal shear stress
  • pt100x 1256/(450x700)0.39?0.4
  • Permissible stress for pt0.4 from table 19
    ?c0.432 lt ?v Hence shear reinforcement is
    required to be designed
  • Strength of concrete Vuc0.432 x 450 x 700/1000
    136 kN
  • Shear to be carried by steel Vus210-136 74 kN

29
  • Check for Shear
  • Nominal shear stress
  • pt100x 942/(400x600)0.39?0.4
  • Permissible stress for pt0.4 from table 19
    ?c0.432 lt ?v Hence shear reinforcement is
    required to be designed
  • Strength of concrete Vuc0.432 x 400 x 600/1000
    103 kN
  • Shear to be carried by steel Vus162-103 59 kN

30
  • Check for Shear
  • Spacing 2 legged 8 mm dia stirrup
  • sv
  • Two legged 8 stirrups are provided at 300 mm c/c
    (equal to maximum spacing)

31
  • Step5Design of Columns
  • Cross-section of column 450 mm x 600 mm
  • Ultimate axial load Pu1.5 x 140 210 kN (Axial
    load shear force in beam)
  • Ultimate moment Mu 1.5 x 156 234 kN-m (
    Maximum)
  • Assuming effective cover d 50 mm d/D ?0.1

32

33
  • Step5Design of Columns
  • Referring to chart 32 of SP16, p/fck0.04 p20 x
    0.04 0.8
  • Equal to Minimum percentage stipulated by
    IS456-2000 (0.8 )
  • Ast0.8x450x600/100 2160 mm2
  • No. of bars required 2160/314 6.8
  • Provide 8 bars of 20

34
  • Step5Design of Columns
  • 8mm diameter tie shall have pitch least of the
    following
  • Least lateral dimension 450 mm
  • 16 times diameter of main bar 320 mm
  • 48 times diameter of tie bar 384
  • 300mm
  • Provide 8 mm tie _at_ 300 mm c/c

35

600
450
8-20
Tie 8 _at_300 c/c
36
  • Step6Design of Hinges
  • At the hinge portion, concrete is under triaxial
    stress and can withstand higher permissible
    stress.
  • Permissible compressive stress in concrete at
    hinge 2x0.4fck 16 MPa
  • Factored thrust Pu210kN
  • Cross sectional area of hinge required
    210x103/1613125 mm2
  • Provide concrete area of 200 x100 (Area
    20000mm2) for the hinge

37
  • Step6Design of Hinges
  • Shear force at hinge Total moment in
    column/height 156/3.7242
  • Ultimate shear force 1.5x4263 kN
  • Inclination of bar with vertical ?
    tan-1(30/50) 31o
  • Ultimate shear force 0.87 fy Ast sin?
  • Provide 4-16 (Area804 mm2)

38
  • Step7Design of Footings
  • Load
  • Axial Working load on column 140 kN
  • Self weight of column 0.45 x 0.6 x3.72x 24
    24
  • Self weight of footing _at_10 16 kN
  • Total load 180 kN
  • Working moment at base 42 x 1 42 kN-m

39
  • Step6Design of Footings
  • Approximate area footing required Load on
    column/SBC
  • 180/200 0.9 m2
  • However the area provided shall be more than
    required to take care of effect of moment. The
    footing size shall be assumed to be 1mx2m (Area2
    m2)

40
(No Transcript)
41
  • Step6Design of Footings
  • Maximum pressure qmaxP/AM/Z 180/26x42/1x22
    153 kN/m2
  • Minimum pressure qminP/A-M/Z 180/2-6x42/1x22
    27 kN/m2
  • Average pressure q (15327)/2 90 kN/m2
  • Bending moment at X-X 90 x 1 x 0.72/2 22
    kN-m
  • Factored moment Mu?33 kN-m

42
  • Step6Design of Footings
  • Over all depth shall be assumed as 300 mm and
    effective depth as 250 mm,
  • Corresponding percentage of steel from Table 2 of
    SP16 is pt 0.15 gt Minimum pt0.12

43
  • Step6Design of Footings
  • Area of steel per meter width of footing is
    Ast0.12x1000x250/100300 mm2
  • Spacing of 12 mm diameter bar 113x1000/300
    376 mm c/c
  • Provide 12 _at_ 300 c/c both ways

44
  • Step6Design of Footings
  • Length of punching influence plane ao 600250
    850 mm
  • Width of punching influence plane bo 450250
    700 mm
  • Punching shear Force Vpunch180-90x(0.85x0.7)1
    26.5 kN
  • Punching shear stress ?punchVpunch/(2x(aobo)d)
    126.5x103/(2x(850700)250) 0.16 MPa
  • Permissible shear stress 0.25?fck1.18 MPa gt
    ?punch Safe

45
  • Step6Design of Footings
  • Check for One Way Shear
  • Shear force at a distance d from face of column
  • V 90x1x0.45 40.5 kN
  • Shear stress ?v40.5x103/(1000x250)0.162 MPa
  • For pt0.15 , the permissible stress ?c 0.28
    (From table 19 of IS456-2000)
  • Details of reinforcement provided in footing is
    shown in Fig.

46

47

48
GOOD DAY
Dr. G.S.Suresh Civil Engineering Department The
National Institute of Engineering Mysore-570
008 Mob 9342188467
Email gss_nie_at_yahoo.com
Write a Comment
User Comments (0)
About PowerShow.com