Quality control of Affymetrix arrays - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Quality control of Affymetrix arrays

Description:

If 10%, Affymetrix may provide with new array. Report Type: ... Alpha1: 0.05. Alpha2: 0.065. Tau: 0.015. Noise (RawQ): 1.970. Scale Factor (SF): 0.943 ... – PowerPoint PPT presentation

Number of Views:31
Avg rating:3.0/5.0
Slides: 17
Provided by: PSVEN1
Category:

less

Transcript and Presenter's Notes

Title: Quality control of Affymetrix arrays


1
Quality control of Affymetrix arrays
2
What can go wrong?
  • RNA degradation (before hyb)
  • 3/5
  • Dirty samples
  • background, present calls
  • Uneven hybridizations (during hyb)
  • RLE, NUSE
  • Machine problems

3
If gt10, Affymetrix may provide with new array
4
MAS5 report
  • Report Type Expression Report
  • Date 1100AM 07/01/2003
  • __________________________________________________
    ____________________
  • Filename 030701RE_U133A_PS1.CHP
  • Probe Array Type HG-U133A
  • Algorithm Statistical
  • Probe Pair Thr 8
  • Controls Antisense
  • __________________________________________________
    ____________________
  • Alpha1 0.05
  • Alpha2 0.065
  • Tau 0.015
  • Noise (RawQ) 1.970
  • Scale Factor (SF) 0.943
  • TGT Value 200
  • Norm Factor (NF) 1.000
  • __________________________________________________
    ____________________
  • Background
  • Avg 44.89 Std 0.81 Min 43.10 Max 47.30

5
RNA degradation
  • 3/5 ratios of GAPDH
  • AffyRNAdeg in package affy
  • 3/5 ratios for all genes on the array

6
RNA degradation
7
RNA degradation
  • Results show that RNA degradation is reproducible
    when making technical duplicates

8
affyPLM
  • Library to work with probes
  • fitPLM()
  • fits a linear model with probe effect

9
affyPLM
10
affyPLM
  • image(cel.f)
  • plots weights from fit

11
Relative Log Expression
  • RLE(affybatch)
  • the expression value of one array compared to
    median of all

12
Normalized Unscaled Standard Errors
  • NUSE(affybatch)

13
NUSE
RLE
14
(No Transcript)
15
Solution
  • Uneven hybridizations normalization takes care
    of
  • RNA degradation outliers problematic
  • High background the results will not be as
    clear, but trends can still be seen
  • Bioinformatics and Computational Biology
    Soultions Using R and Bioconductor. Gentleman et
    al. Chapter 3 Quality assessment of Affymetrix
    GeneChip Data, Bolstad et al.

16
Machine problems
  • With time, settings change which reflects on
    the data
  • Roos Jahangir Tafrechi
  • Arnolda de Nooij-van Dalen

old vs old
new vs old
Write a Comment
User Comments (0)
About PowerShow.com