Spatial statistics and Generalized Least Squares Regression - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Spatial statistics and Generalized Least Squares Regression

Description:

Nugget. Sill. Range. Theoretical variogram. Summary of the parameter estimation ... (estimated) nugget = 0.0773. Minimised weighted sum of squares: 4.2704. Call: ... – PowerPoint PPT presentation

Number of Views:176
Avg rating:3.0/5.0
Slides: 23
Provided by: brucek64
Category:

less

Transcript and Presenter's Notes

Title: Spatial statistics and Generalized Least Squares Regression


1
Spatial statistics and Generalized Least Squares
Regression
  • ESM 206C
  • May 20, 2008

2
pH and NO3 in Norwegian lakes
3
Call lm(formula pH.1981 NO3.1981, data
lake) Residuals Min 1Q Median
3Q Max -0.888624 -0.410622 -0.007402
0.386811 1.237405 Coefficients
Estimate Std. Error t value Pr(gtt)
(Intercept) 5.7130797 0.1218255 46.896 lt
2e-16 NO3.1981 -0.0032446 0.0009186
-3.532 0.00106 --- Signif. codes 0 ''
0.001 '' 0.01 '' 0.05 '.' 0.1 ' ' 1 Residual
standard error 0.5103 on 40 degrees of
freedom Multiple R-Squared 0.2377, Adjusted
R-squared 0.2187 F-statistic 12.47 on 1 and 40
DF, p-value 0.001056
4
pH of Norwegian Lakes
5
Questions about Norwegian lake data
  • Is there spatial autocorrelation in pH values?
  • How can we interpolate and smooth those values?
  • Is there a relationship between pH and NO3,
    taking into account spatial autocorrelations in
    both variables?

6
Semivariogram
  • Semivariance is half the average squared
    difference between pairs of lakes a certain
    distance apart
  • Measures variance among sites as a function of
    distance
  • Also called empirical variogram

7
Theoretical variogram
8
Theoretical variogram
Sill
Range
Nugget
9
Theoretical variogram
Summary of the parameter estimation --------------
--------------------- Estimation method WLS
(weighted least squares) Parameters of the
spatial component correlation function
gaussian (estimated) variance parameter
sigmasq (partial sill) 0.3175
(estimated) cor. fct. parameter phi (range
parameter) 0.7817 Parameter of the error
component (estimated) nugget
0.0773 Minimised weighted sum of squares
4.2704 Call variofit(vario pH.vg,
ini.cov.pars c(0.4, 1), cov.model "gaussian")
10
(No Transcript)
11
Kriging
  • Minimum mean-squared-error method of spatial
    prediction
  • Interpolates and smoothes
  • Named after South African mining engineer D.G.
    Krige
  • Uses a theoretical variogram
  • Have to fit (and choose!) the theoretical
    variogram first
  • Produces a smooth surface that fits the data

12
pH
13
Are the residuals spatially correlated?
14
Variogram of residuals
15
(No Transcript)
16
OLS residuals
17
Generalized least squares fit by REML Model
pH.1981 NO3.1981 Data NULL AIC
BIC logLik 84.07367 90.82919
-38.03684 Correlation Structure Spherical
spatial correlation Formula Long Lat
Parameter estimate(s) range 0.1000251
Coefficients Value Std.Error
t-value p-value (Intercept) 5.713080 0.12182546
46.89561 0.0000 NO3.1981 -0.003245 0.00091864
-3.53193 0.0011 Correlation
(Intr) NO3.1981 -0.763 Standardized residuals
Min Q1 Med Q3
Max -1.74134029 -0.80465113 -0.01450431
0.75799186 2.42480698 Residual standard error
0.5103106 Degrees of freedom 42 total 40
residual
18
Generalized least squares fit by REML Model
pH.1981 NO3.1981 Data NULL AIC
BIC logLik 82.99625 89.75176
-37.49812 Correlation Structure Gaussian
spatial correlation Formula Long Lat
Parameter estimate(s) range 0.2091937
Coefficients Value Std.Error
t-value p-value (Intercept) 5.723516 0.12950850
44.19413 0.0000 NO3.1981 -0.003095 0.00092111
-3.36036 0.0017 Correlation
(Intr) NO3.1981 -0.742 Standardized residuals
Min Q1 Med Q3
Max -1.75288797 -0.82890218 -0.07613712
0.71610156 2.24719899 Residual standard error
0.5214192 Degrees of freedom 42 total 40
residual
19
R code, part 1
  • Use R Commander to read in the data. Call the
    dataset lake
  • Make the variables available directly
  • attach(lake)
  • Plot the pH in space
  • plot(Long, Lat, cex(pH.1981-3), xlab"Longitude
    (degrees E)", ylab"Latititude (degrees N)")
  • Semivariogram
  • Set the limits for the distance to not exceed
    half the range (sample size gets too small with
    large distances)
  • uvec is the list of distance bins to evaluate
    the semivariogram
  • max.dist lt- sqrt((max(Lat)-min(Lat))2
    (max(Long)-min(Long))2)
  • uvec lt- seq(0,max.dist/2,length20)
  • Load the required library and fix a tiny bug in
    the package
  • library(geoR)
  • print.summary.variomodel lt- function(...)print.su
    mmary.variofit(...)
  • Calculate and plot the semivariogram
  • Long and Lat are the locations of the points,
    and pH.1981 is the data
  • pH.vg lt- variog(coordscbind(Long,Lat),
    datapH.1981, uvecuvec)

20
R code, part 2
  • Plot a variety of theoretical variograms
  • The par statement sets up the graphics window
    to hold multiple graphs
  • par(mfrowc(2,2))
  • Gaussian (the sum of sqares is from the
    summary)
  • pH.vls lt- variofit(pH.vg, c(0.4,1),
    cov.model"gaussian")
  • summary(pH.vls)
  • plot(pH.vg,main"Gaussian SS4.27")
  • lines(pH.vls)
  • Exponential
  • pH.vls lt- variofit(pH.vg, c(0.4,1),
    cov.model"exponential")
  • summary(pH.vls)
  • plot(pH.vg,main"Exponential SS4.57")
  • lines(pH.vls)
  • Spherical
  • pH.vls lt- variofit(pH.vg, c(0.4,1),
    cov.model"spherical")
  • summary(pH.vls)

21
R code, part 3
  • Krige the pH data
  • Re-fit the spherical variogram, as it was best
  • pH.vls lt- variofit(pH.vg, c(0.4,1),
    cov.model"spherical")
  • Create a grid of points to predict the model
  • loci lt- expand.grid(seq(min(Long),max(Long),length
    51), seq(min(Lat),max(Lat),length51))
  • Run the krige
  • pH.k lt- krige.conv(coordscbind(Long,Lat),
    datapH.1981, locationloci, krigekrige.control(o
    bj.modelpH.vls))
  • Plot the output with a colormap and a contour
    plot
  • par(mfrowc(1,1))
  • image(pH.k, xlab"Longitude (east)",
    ylab"Latitude (north)")
  • contour(pH.k,addT)
  • Add the locations of the lakes
  • points(Long,Lat , cex(pH.1981-3), pch10,
    col"blue")
  • Use R commander to do an OLS regression
    (ph.1981NO3.1981) and call it NO3.lm

22
R code, part 4
  • Look at the various theoretical variograms to
    see which fits best
  • resid.vls lt- variofit(resid.vg, c(0.4,1),
    cov.model"gaussian")
  • summary(resid.vls)
  • resid.vls lt- variofit(resid.vg, c(0.4,1),
    cov.model"exponential")
  • summary(resid.vls)
  • resid.vls lt- variofit(resid.vg, c(0.4,1),
    cov.model"spherical")
  • summary(resid.vls)
  • resid.vls lt- variofit(resid.vg, c(0.4,1),
    cov.model"power")
  • summary(resid.vls)
  • Spherical fits best refit that and add to plot
  • resid.vls lt- variofit(resid.vg, c(0.4,1),
    cov.model"gaussian")
  • lines(resid.vls)
  • Do a krige of the residuals, and plot it
  • resid.k lt- krige.conv(coordscbind(Long,Lat),
    dataresid(NO3.lm), locationloci,
    krigekrige.control(obj.modelresid.vls))
  • image(resid.k, xlab"Longitude (east)",
    ylab"Latitude (north)")
  • contour(resid.k,addT)
  • points(Long,Lat , cex(fitted(NO3.lm)-3), pch10,
    col"blue")
Write a Comment
User Comments (0)
About PowerShow.com