Title: Si Pixel Tracking Detectors
1Si Pixel Tracking Detectors
- Introduction
- Sensor
- Readout Chip
- Mechanical Issues
- Performance
- -Diamond
236 MPix 150x150mm 2
3HISTORICAL
Vertex High Radiation
Stand- resolution multi
hardness alone Tracking
Trig 80s- CCD detectors- SLD
X Si - diode x x 90s-
Si - diode- Omega2/3,DELPHI X X x
Si - diode- SSC/LHC X X
X Diamond x x
x 2000s Si - diode/ LHC/BTEV X X
X X Diamond X X X X
4Track Cluster
- Pixel Tracker
- Pixel Size
- Occupancy
- Charge Sharing
- S/N
- ExB Drift
- Radiation Damage
- LHC - 1014 /cm2/yr
Trigger
Single Track
Charge Sharing
Vertex Resolution (20-30)mm IP
5- Radiation Damage Effects
- Increase in volume leakage current.
- Build-up of effective p-doping (bulk inversion).
- Charge trapping.
- Reverse Annealing- inactive defects become
active, - increasing effective p-doping. (T-dependent)
6Basic Diode Structure
7- BASIC PACKAGE
- Sensor Bump Bonded to Readout Chip
- In or Pb/Sn for Bumps
- Wafer Thinning
- Dicing
- Yield
8- Sensors Isolation
- Guard Ring Design
- p-stop, p-spray
- Radiation Damage
- -Bulk Damage
- -Depletion Voltage
- Type Inversion
- Self Annealing/Thermal
- Diamond Detectors
- -Radiation Hard
- -Simple Architecture
Electrode Diamond Electrode
CVD DIAMOND
9- READOUT CHIP (CMOS)
- Radiation Hard Architecture (SOI)
- Military/ Space Science
- Analoque/Digital
- SEU, Latchup (10-6 -10-10)
- DMILL .80mm Bi-CMOS
- IBM .25mm lt-----
Thin Si Layer Oxide Si Substrate
PSI Readout Chip
10(No Transcript)
11- BUMP and FLIP-CHIP Interconnect
- Choice of Indium or Solder (PbSn)
- Indium
- -Evaporation, 2 bumps, Allignment
- -High Yield
- Electroplated Solder
- -Reflow techniques
- 180oC. Flux, Self Alligning
- -Complex UBM (UnderBump Metalization)
- -Excellent Electrical and Mechanical
- Contact
-
Readout Chip
Sensor
12Pseudo -TRIGGER PAD
SLOW CONTROL UPLOADS 40MHz I2C
DATA FAST TRIGGER OUT (L3)
13COOLING
MECHANICAL
- Low Mass Support Structures
- - Be , C-Fiber
- Wafer Thinning
- -.25 mm lithography on 8800mm
- Dicing Accuracy and Placement
- Radiation Hard Glues/Epoxies
- Cooling (KWs per Detector)
- - (10-20) oC
- Flurocarbons (high mass)
- Evaporative Cooling(low mass)
- Thermal Expansion
14 High Density Interconnects
VHDI
Sensor
ROC
Bump Bonds
HDI
Wire Bonds
Be Panel
Silicon Plate
15PERFORMANCE (Si Diamond in CERN Test Beam)
Charge Sharing
Vienna Repeater
Y
Row
X
Z, B
Double Column
Beam
20o
ROC, PSI36 11 double columns x 30 rows
Pixels 150 x150 ?m2
8mm
D\Transfer from Bob\Pictures\Test Beam
Hardware\Geometry Pixels.ppt
16Si 25000e/mip 2000e noise 99
efficiency Dia 9000e/mip 2000e noise
95 efficiency
PERFORMANCE (cont)
Charge sharing vs position
Pixels at 20o to beam
? 14 ?m over pixel
150 ?m
150 ?m
Charge sharing vs position
150 ?m / ?12 43 ?m
? 46 ?m over pixel
Pixels normal to beam
17- CONCLUSIONS
- Si Pixel Detectors- a Great Challenge!
- Many Difficult Technologies to Master.
- Much Will be Solved in LHC/BTeV era.
- HEP Must Learn to Deal with High Development
Costs. - Trigger Possibilities Abundant.
- Diamond Detectors Feasible.
18(No Transcript)
19X-Ray Crystalography