Polarized Thermal Dust Emission in the Interstellar Medium - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Polarized Thermal Dust Emission in the Interstellar Medium

Description:

Polarized Thermal Dust Emission in the Interstellar Medium ... Giles Novak. Megan Krejny. Caltech. Darren Dowell. Hiroko Shinnaga. Harvard / CfA. Hua-bai Li ... – PowerPoint PPT presentation

Number of Views:72
Avg rating:3.0/5.0
Slides: 23
Provided by: planckIpa
Category:

less

Transcript and Presenter's Notes

Title: Polarized Thermal Dust Emission in the Interstellar Medium


1
Polarized Thermal Dust Emission in the
Interstellar Medium
  • John Vaillancourt
  • California Institute of Technology

U. Chicago Roger Hildebrand Larry
Kirby Northwestern Giles Novak Megan Krejny
Caltech Darren Dowell Hiroko Shinnaga Harvard /
CfA Hua-bai Li
U. Western Ontario M. Houde M. Attard U. Western
Australia Jackie Davidson
CMB component separation and the physics of
foregrounds Pasadena, 2008 June 15
2
Too many dust Topics...
  • Included Polarized emission from
  • thermal dust,
  • in dense molecular clouds,
  • at ????60 ?m - 1 mm (? 300 - 5000 GHz).
  • How do we extrapolate to diffuse ISM and ? gt 1 mm
    ?
  • This talk does not discuss
  • Starlight polarization and the diffuse ISM
  • Galactic magnetic fields (Carl Heiles, Monday
    afternoon)
  • Grain alignment (Alex Lazarian, later today)
  • Anomalous microwave emission (Rod Davies, later
    today)

3
Polarized Emission from I.S. Dust
  • Polarization by scattering grain size
    wavelength
  • Polarization by selective extinction / absorption
  • Diffuse ISM AV few magnitudes
  • Observed at near-optical wavelengths (UV - NIR)
  • Polarization from emission
  • Dense ISM AV gt 20 mag., currently 30 mag.
  • Observed at FIR - MM ? 50 ?m - 1 mm
  • CMB foregrounds require understanding of
  • Long wavelength emission ? gt 3 mm (? lt 100 GHz)
  • in the diffuse ISM

4
Extinction vs. Emission Polarization
Polarization of extincted starlight Diffuse ISM,
UV-Vis-NIR
Polarization by emission Dense ISM
350 ?m (Hertz, few arcmin) (after D. Dowell)
850 ?m (Archeops few deg.) (Benoit et al. 2004)
5
Polarized Emission vs. Wavelength
W51
100 ?m 350 ?m 850 ?m
Dotson et al. 2000, 2008 Chrysostomou 2002
Schleuning et al. 2000, Matthews et al. 2008 (350
?m grayscale/contours)
Angle differences contain interesting B-field
info. but ...
6
Polarization Spectrum
Spectropolarimetry - Visible ?s
Multi-? polarimetry - FIR/MM ?s
Cloud Cores Schleuning 1998
extinction
graphite
Orion - KL
Orion - KHW
polarization
Whittet 2004
Cloud Envelopes Vaillancourt et al. 2008
H2O
Si-O
Orion - BN
7
Predicted polarization Spectra (1)
  • Dust emission from
  • a single grain species at
  • a single temperature
  • (Hildebrand et al. 1999)

Observed Spectra
Does not match observations !
8
Predicted polarization Spectra (2)
Tenuous Cloud
2.0
  • Dust emission from
  • a single grain species at
  • a single temperature
  • (Hildebrand et al. 1999)

TA gt TB, pA lt pB, ?A ?B OR TA TB, pA lt pB, ?A
gt ?B
  • Dust emission from
  • multiple grain species
  • multiple temperatures or emissivities
  • (Hildebrand et al. 1999)

Heterogeneous Cloud
TA gt TB, pA gt pB, ?A ?B
Hildebrand et al. 1999
9
Predicted polarization Spectra (3)
Bethell et al. 2007
Hildebrand et al. 1999
  • Radiative torque grain alignment model in
    starless clouds
  • Nearly all grains exposed to same I.S. radiation
    field
  • Large grains are more efficiently aligned (Cho
    Lazarian 2005)
  • Large grains cool more efficiently
  • Colder grains better aligned than warm grains

10
Predicted polarization Spectra (4)
Observed Spectra
  • Radiative torques embedded stars
  • Grains near stars aligned
  • Grains far from stars not well-aligned
  • Warm grains better aligned than cool grains

Heterogeneous Cloud
Combining 2 models produces a minimum in P vs ?.
TA gt TB, pA gt pB, ?A ?B
Hildebrand et al. 1999
11
SEDs the polarization spectrum
OMC-1
Polarization
Models
Observation
SED
28 K
polarization (), Flux (Jy/beam)
52 K
45 K ?1 P10
17 K ?2 P0
Polarization
  • Observed cloud SEDs indicate wide
    dust-temperature distribution
  • polarization ?-minimum constrains SED models
  • function of components temperature T, and
    spectral index ?
  • independent of relative total column densities

45 K P4
SED
25 K P0
10 K P4
Wavelength (?m)
12
IR Cirrus - High-latitude dust
  • All grains likely exposed to same environment
  • Finkbeiner, Davis, Schlegel (FDS99) -- high
    latitude dust
  • T 9.5 K, ? 1.7 (silicate ?)
  • T 16 K, ? 2.7 (graphite ?)
  • If silicate is polarized and graphite unpolarized
    then
  • TC gt TSi, pC lt pSi
  • Prediction
  • thermal dust polarization is constant for ? gt 1 mm

2.0
13
The future of Dust Polarimetry
  • Need new instruments which
  • Cover wide spectral range
  • New environments, other than dense clouds
  • Better sampled polarization total intensity
    SEDs
  • Instruments like...
  • HAWC / SOFIA
  • SHARP / CSO
  • SCUBA-2 / JCMT
  • CCAT
  • ALMA
  • Planck
  • ...
  • ...

Planck ?
CSO / JCMT
SOFIA
14
The future of Dust Polarimetry
15
Polarized Emission from I.S. Dust
  • Current observations
  • ? 60 - 1000 ?m (? 300 - 5000 GHz)
  • Dense ISM only, AV gt 30
  • Grain alignment cloud models consistent with
    P-spectrum
  • Near future observations ( 10 years)
  • ? 50 - 3000 ?m (? 100 - 6000 GHz)
  • Slightly diffuse ISM, AV gt 5
  • Push tests for alignment and cloud models to
    different environments and wavelengths
  • Planck
  • Most interesting dust bands ? 0.85, 1.4, 2.1,
    3.0 mm
  • AV 5-10 at 5 arcmin resolution (IRAS in
    polarization)

16
Extra Slides
17
Optical polarization
  • Traces B-field in diffuse ISM
  • 9300 stars covers most of Galaxy (Heiles 2000)

P gt 5, d gt 1 kpc, b lt 30?
18
Multi-scale fields in Molecular Clouds
NGC 6334
Novak et al. 2007
IRAS 100 ?m
25 arcmin
SPARO 450 ?m 300 FWHM
Hertz 350 ?m 20 FWHM
SHARC-2 grayscale
(other sources, e.g. posters/talks by F.
Poidevin, H. Li)
19
Relating Poln by Absorption Emission
other definitions
Definition of Polarization
Absorption of Background Source
? ltlt 1
Emission self-absorption
  • Assumptions
  • Observing same grains
  • Observing at same wavelength
  • Scattering is negligible
  • Solutions
  • Use for only very low ? regions
  • Measure ?(?) in total intensity
  • Measure albedo, or use only for ? gtgt a

See Hildebrand Dragovan (1995, ApJ, 450, 663)
20
Where are dust grains aligned?
Diffuse Clouds (Av few)
Dense Clouds (Av gt 30)
Polarization ()
Arce et al. 1998
P-efficiency, P / Av
Multiple clouds (Vaillancourt in prep.)
Arce et al. 1998
  • Pabs ? ? Pemis ?
  • Yes (Hildebrand Dragovan 1995)

Visible extinction, AV (mag)
21
Stellar Locations P-spectrum
  • Radiative torques ?
  • correlation between P-spectrum and stellar
    locations
  • Spitzer / IRAC finds stars in dense clouds
  • Existing SMM observations (20 arcsec)
    insufficient to resolve stars
  • SHARP (10 arcsec) or SCUBA-2 (7 _at_ 450 ?m) may
    resolve stars, but a FIR polarimeter will be more
    sensitive to warm dust near stars

22
Why is dust Polarized?
Polarization by Absorption
Polarization by Emission
? FIR - MM
? UV - NIR
Diagrams after A. Goodman http//cfa-www.harvard.
edu/agoodman/ppiv/
Write a Comment
User Comments (0)
About PowerShow.com