Introduction to Neutrino Factory Physics - PowerPoint PPT Presentation

About This Presentation
Title:

Introduction to Neutrino Factory Physics

Description:

1960's muon neutrino observed, V-A physics & neutrino ... Gallium. John Bahcall. The sun does not shine without Antimatter. 6. Solar Neutrino Experiments ... – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 36
Provided by: PeA85
Category:

less

Transcript and Presenter's Notes

Title: Introduction to Neutrino Factory Physics


1
Introduction to Neutrino Factory Physics
1st Meeting of the Muon Concertation and
Oversight Committee CERN, Thursday 18 April 2002
  • Ken Peach
  • Rutherford Appleton Laboratory

2
The Standard Model of Particles and their
Interactions
Quarks
Force Carriers
Leptons

Generations of matter
3
The Standard Model
  • The Parameters
  • 6 quark masses
  • mu , mc, mt
  • md, ms, mb
  • 3 lepton masses
  • me, mm, mt
  • 2 vector boson masses
  • Mw, MZ
  • (mg, mg0)
  • 1 Higgs mass
  • Mh
  • 3 coupling constants
  • GF, a, as
  • 3 quark mixing angles
  • q12, q23, q13
  • 1 quark phase
  • d

Neutrino masses set to 0!
4
The History of the Neutrino
  • 1930s Neutrino proposed
  • 1940s ???
  • 1950s electron neutrino observed, V-A proposed
  • 1960s muon neutrino observed, V-A physics
    neutrino oscillations suggested
  • 1970s neutral currents, DIS, structure functions
    solar neutrino deficit
  • 1980s sin2qw, more structure functions, charm,
    ...
  • 1990s more structure functions,sin2qw, LEP (3
    generations) more solar neutrino deficit
    atmospheric neutrino deficit
  • 2000s Tau neutrino discovered, even more solar
    neutrinos accelerator oscillation
    measurements???
  • 2010s neutrino factory ???? CP violation???

5
The Solar Neutrino Problem
  • Solar Neutrino Problem

6
Solar Neutrino Experiments
  • Radio-chemical experiments
  • i) Chlorine experiments (Davis et al, Homestake
    mine)
  • Next slide
  • ii) SAGE (Baksan) GALLEX (Gran Sasso)
  • ne 71Ga ?71Ge e- 71Ge ? 71Ga (11.4d)
    Electron Conversion
  • Threshold 0.23MeV Sensitive to the main pp
    flux!!!!
  • Production rate 0.04/tonne/day!
  • Water Cerenkov experiments
  • i) Kamiokande and SuperKamiokande
  • Electron Scattering (ES) nx e-? nx e-
  • ii) SNO
  • Reactor experiments
  • BUGEY, CHOOZ, PALO VERDE, KAMLAND
  • (not solar neutrino experiments as such, but in
    the same energy regime with electron
    antineutrinos.)

7
Homestake mine - Ray Davis
Look for solar neutrinos through the inverse b
reaction ne 37Cl ? 37Ar e-
35 d EC
37Cl 4.9MeV
8
Sudbury Neutrino Observatory (SNO)
  • Look for neutrino interactions in water
  • SuperKamiokande Electron Scattering
  • ES nx e-? nx e-
  • SNO
  • ES (nx e- ? nx e-)
  • CC (ned ? p p e-)
  • The ES rates can be directly compared SNO and SK
  • SK statistically dominated 20kT vs 1kT, 1000d
    vs 200d
  • CC rate only sensitive to electron neutrinos!
  • SNO/SSM 0.347 ? 0.029 (ne only)
  • SK/SSM 0.459 ? 0.017 (ne 15 nm,t)
  • Difference is 0.112 ? 0.034 (3.3 s.d.)
  • Solid evidence for active non-electron neutrinos
    from the sun
  • SNO advantage
  • NC (nxd ? nx p n g)

9
SuperKamiokande
10
Summary of solar neutrino experiments
11
Summary of evidence of a neutrino problem
  • Solar Neutrinos
  • Electron flux 0.3-0.5 expected from Standard
    Solar Model
  • Evidence for an energy dependence of the effect
  • Probably ne?nm
  • Atmospheric neutrinos
  • Muon flux 0.5 expected from production
    mechanism
  • Strong evidence for energy and length dependence
  • Probably nm?nt
  • Accelerator reactor neutrino beams
  • Mainly limits
  • K2K beginning to see an effect
  • LSND ?
  • Something happens to neutrinos between creation
    and detection!
  • Not a small effect (in general) ? 50 loss!
  • Not part of the Standard Model new physics

12
2-flavour oscillations
  • 2 flavour eigenstates na,nb, 2 mass eigenstates
    n1,n2
  • After a finite time, the neutrino flavour
    balance has changed
  • Some wrong flavour component has been
    introduced.
  • Note
  • 1. If the masses are the same there is no
    oscillation
  • 2. If a mass is zero, that neutrino decouples
    from oscillation
  • 3. The oscillation is a beating phenomenon
  • In the lab frame, the propagation is
  • Oscillation depends upon
  • Dm2ijm2i-m2j

13
2 flavour oscillation
  • 2 flavours (a b) 2 mass eigenstates (i j)

14
Neutrino Oscillation Measurements
Probability that a nb appears as a function of
L from a na produced at L0
Signal
15
Summary of signals
16
Impact of SNO on neutrino oscillations
Lisi
17
Some examples
E (GeV) Dm2 (eV2) lE/1.27Dm2 (km) q (deg) L (km) Prob. na ? na Prob. na ? nb Comment
10-2 10-7 80,000 45 1.5 108 0.5 0.5 Solar vacuum
10-2 10-6 8,000 5 1.5 108 1 0.01 SMA
10-2 10-4 80 45 1.5 108 0.5 0.5 LMA
1 10-4 8,000 10 12,000 1 0.03 e Atmos. ?
1 10-3 800 45 8 1 0.0001 m Atmos. ?
10 10-3 8,000 45 8 1 0 m Atmos. ?
1 10-3 800 45 12,000 0.5 0.5 m Atmos. ?
10 10-3 8,000 45 12,000 0.6 0.4 m Atmos. ?
10-1 1 .08 0.1 0.1 1 10-5 LSND
18
3 flavour oscillation
  • Neutrinos are created as flavour eigenstates
  • electron ne , muon nm , tau nt
  • but these are not the mass eigenstates
  • n1 , n2 , n3
  • The flavour eigenstates are a mix of the mass
    eigenstates

U is the Maki-Nakagawa-Sakata Matrix
Prog.Theor.Phys.28 870 (1962).
19
Neutrino Mixing
20
CP-violation
  • Ignore sub-leading effects in the CP-even
    transitions

21
Neutrino Mixing what do we know?
absolute mass scale ? Less than few eV
(electron neutrino)
22
  • Oscillation phenomenology (CP/T violating)

L/E
23
CP-violation and T-violation
  • Fundamentally equivalent via CPT Theorem
  • But different systematically practically
  • CP violation
  • Compare neutrino with antineutrino oscillations
  • T-violation
  • Compare oscillation of (say) electron to muon
    neutrino with muon to electron
    neutrino
  • Both experiments difficult
  • Flux normalisation
  • Matter effects in the earth
  • Backgrounds (especially in electron channel)
  • Redundancy (in principle)

24
CP-violation what L/E?
  • Flux/m2/muon decay at a distance L (m) from muons
    of energy E (gm10E, E in GeV) (10E/L)2/p.
  • e.g. Em50GeV, L1000km gives 8 ? 10-8
    n/m2/m-decay
  • Significance independent of sinq13
  • independent of L
  • Effect ? sin2(Dm231L/4E) ? L2 but flux ? L-2
  • ? E
  • Effect ? sin2(Dm231L/4E) ? E-2 but flux ? E2
    but snp ? E
  • Need sin(Dm231L/4E) maximal (p/2)

Em GeV Dm2 eV2 lE/1.27Dm2 km Sin term _at_ 3300 km n Flux/m2 _at_ 3300km/1021 m Comment
20 4 10-3 3,300 1 1012 m Atmos.
20 10-4 160,000 0.04 1012 LMA
25
Number of Events?
  • CC cross-section f ? 0.67 ? 10-38 cm2 ? En
    (GeV)
  • f1 for neutrinos and 0.5 for anti-neutrinos
  • Flux 10-4 (Em/L)2/p (L in km, E in GeV)

Em20 GeV, L3300km, Nm1021, MD50kT gives
lt6,000 events
c2s2lt0.01
(sind 1) 20 effect ? ?1200 events
CPV
26
a complicated business
  • (Richter hep-ph/0008222)

a 2?2 GFneEn 7.6 10-5 r E Where is the
electron density r is the density (g/cm3) E
is the neutrino energy (GeV)
27
Matter v. CP-violation effects
28
nt appearance
29
Basic features of a neutrino factory
  • High intensity proton source
  • 2-50GeV, 100-1Hz
  • High power target
  • 4MW (liquid metal, moving solid, )
  • Pion capture decay channel, muon capture
  • solenoid
  • Cooling
  • phase rotation, ionisation
  • Acceleration
  • Storage
  • Aim gt1020 muon decays/year
  • Em 20-50 GeV
  • All are a technical challenge

30
What can you do with a neutrino factory?
  • (almost) complete study of neutrino mixing
  • ne, nm ? nx disappearance
  • ne ? nm appearance
  • ne, nm ? nt appearance
  • and
  • m? m- charge conjugate

Note a Neutrino Factory is the only way to
create pure high energy flavour-tagged electron
neutrino beams!
31
The Neutrino Factory
  • CPV gt 1020 muon decays
  • Conventional n beams
  • p,m K decay
  • Some flavour selectivity
  • Contamination
  • Fluxes 1017-1018 n
  • Reactor n beams
  • Pure ne
  • Huge Fluxes
  • Very low energy (MeV)
  • Super Conventional n beams
  • p, ( some m) decay
  • Flavour selectivity (nm)
  • Low Contamination at Elt200MeV
  • Fluxes 1018-1019 n?
  • The Neutrino Factory

32
CP reach of a neutrino factory
40 kT detector 50GeV muons 1021 useful decays 2
(3) baselines
Gomez-Cadenas
33
Challenges
  • Machine
  • proton source
  • target
  • pion and muon capture
  • muon cooling
  • (RLAs)
  • muon storage ring
  • RADIATION!
  • Detector
  • technology ( mass)
  • magnetic field
  • electron charge identification
  • tau identification
  • cost
  • cost
  • cost

34
Scientific Challenges
  • Theory
  • What gives neutrinos mass?
  • Why three generations?
  • What determines the mixing angles?
  • Why are left- right-handed neutrinos so
    different?
  • Are they Majorana particles?
  • If so, why? If not, why not?
  • Is CP/T violation in the neutrino sector a factor
    in the baryon asymmetry of the universe?
  • Phenomenology
  • What is the impact of Beyond the Standard Model
    on the MNS phenomenology?
  • How can absolute neutrino masses be inferred or
    measured?
  • What constraints on the MNS matrix? Are there
    loopholes?
  • How to show whether Majorana neutrinos? How to
    measure Majorana phases?
  • Other implications of finite neutrino masses
    mixing?

35
Summary Conclusions
  • A neutrino factory provides the best opportunity
    to study in detail the neutrino sector
  • CP physics
  • oscillation physics
  • new physics?
  • (not discussed) A neutrino factory has an
    exciting and extensive programme of conventional
    neutrino physics
  • (not discussed) The proton source could provide
    new opportunities for rare decay and precision
    measurements of particle properties
  • (not discussed) A neutrino factory is an
    essential first step towards a muon collider
  • Technical challenges abound (machine detectors)
  • A neutrino factory is needed somewhere at some
    time
  • soon?
  • Crucial low energy experiments
  • Neutrinoless double beta decay
  • Neutrino absolute mass measurement
  • Cosmological and Astrophysical observations
Write a Comment
User Comments (0)
About PowerShow.com