CSCI381 Fall 2005 - PowerPoint PPT Presentation

About This Presentation
Title:

CSCI381 Fall 2005

Description:

CSCI381 Fall 2005. GWU. Efficient Exponentiation in Groups: mod m and in elliptic curve groups ... Elliptic Curves. E.g. y2 = x3 6x 4 mod 7 ... – PowerPoint PPT presentation

Number of Views:9
Avg rating:3.0/5.0
Slides: 10
Provided by: poo69
Category:
Tags: csci381 | elliptic | fall

less

Transcript and Presenter's Notes

Title: CSCI381 Fall 2005


1
Efficient Exponentiation in Groups mod m and in
elliptic curve groups
  • CSCI381 Fall 2005
  • GWU

2
Efficient exponentiation(from Memon notes)
  • Usual approach to computing xc mod n is
    inefficient when c is large.
  • Example 551 involves 51 multiplications mod n
  • Instead, represent c as bit string bk-1 b0 and
    use the following algorithm
  • z 1
  • For i k-1 downto 0 do
  • z z2 mod n
  • if bi 1 then z z x mod n
  • How many multiplications? k 2ceiling(log2c)

3
Example
  • Calculate 551 mod 7 efficiently
  • 51 110011 25 24 21 20
  • 551 ((((52)2)2)2)2 ? (((52)2)2)2 ? 52 ? 51
  • How many multiplications did you need?

4
551 mod 7
i bi z
5 1 1 5
4 1 25 mod 7 4 20 mod 7 6
3 0 36 mod 7 1 1
2 0 1 1
1 1 1 5
0 1 25 mod 7 4 20 mod 7 6
5
Efficient Exponentiation Elliptic Curves
  • E.g. y2 x3 6x 4 mod 7
  • Curve O, (0, 2), (0, 5), (1, 2), (1, 5), (3,
    0), (4, 1), (4, 6), (6, 2), (6, 5)
  • (3, 0) (3, 0) ?
  • (3, 0) (4, 1) ?
  • (1, 2) (1, 2) ?
  • Is there a generator?

6
Efficient Exponentiation Elliptic Curves
  • E.g. y2 x3 6x 4 mod 7
  • Curve O, (0, 2), (0, 5), (1, 2), (1, 5), (3,
    0), (4, 1), (4, 6), (6, 2), (6, 5)
  • 5 (1, 2) ?

7
Elliptic Curves Efficient Exponentiation
  • Represent c as bit string bk-1 b0
  • Then
  • z 1
  • For i k-1 downto 0 do
  • z 2z
  • if bi 1 then z z x

8
Or use algorithm from handout
  • f(P, m)
  • If m 0
  • return (O)
  • else
  • If m (mod 2) 0
  • return ( f(PP, m?2) )
  • else
  • return (Pf(PP, m?2))

9
5(1, 2) ?
Write a Comment
User Comments (0)
About PowerShow.com