Blue Supergiants as a Tool for Extragalactic Distances PowerPoint PPT Presentation

presentation player overlay
About This Presentation
Transcript and Presenter's Notes

Title: Blue Supergiants as a Tool for Extragalactic Distances


1
(No Transcript)
2
Extragalactic stellar astronomy
  • Rolf Kudritzki, Fabio Bresolin, Miguel Urbaneja

3
Munich solar eclipse, 1999

4
FORS transport to P.
5
VLT 2
6
(No Transcript)
7
(No Transcript)
8
FORS at 2 telescopes
9
Extragalactic stellar astronomy
Quantitative stellar spectroscopy of
individual stars
in galaxies beyond the Local Group
Properties of stellar populations Evolution of
galaxies Chemical abundance and abundance pattern
gradients Interstellar extinction Distances Dark
matter content
10
stellar spectroscopy of massive stars in the
Local Group and beyond more motivation
  • stellar evolution with mass loss calibrate
    stellar parameters, SEDs (ionizing properties)
  • stellar winds momentumenergy to the ISM
  • core-collapse supernova progenitors
  • stellar instabilities at high luminosity
  • spectral synthesis of starbursts

Local Group ideal laboratory metallicity changes
by more than one order of magnitude WLM ? M31
extend beyond Local Group with 8-10m telescopes
NGC 3621 by HST/ACS
11
Blue supergiants
  • Brightest normal stars at visual light
  • -7.0 Mv -9.0 mag (B4 Ia to A4 Ia)

12

Milky Way LMC SMC
13
Blue supergiants
  • Brightest normal stars at visual light
  • -7.0 Mv -9.0 mag (B4 Ia to A4 Ia)
  • Evolution simple L const., M const.

14
Evolution of blue supergiants
Tracks by Maeder Meynet (with and without
rotational mixing)
15
Blue supergiants
  • brightest normal stars at visual light
  • -7 MV -10 mag (B4 Ia to A4 Ia)
  • evolution simple L const., M const.
  • evolution fast tev 103 yrs
  • progenitors 15 Msun M 40 Msun ? O-stars
  • age 0.5 to 1.3 107 yrs
  • ? many outside OB-associations, HII-regions
  • crowding/multiplicity less important


16
diagnostics of blue supergiants
17
Determination of Teff and log g
  • ionization equilibria and/or Balmer jump ? Teff
  • A supergiants Mg I/II, N I/II, O I/II, S
    II/III
  • ?Teff/Teff 1
  • Balmer lines ? log g
  • ?log g 0.05
  • fit-diagrams in (log g, Teff)-plane

18
S II/III
O I/II
Balmer lines
N I/II
Przybilla, Butler, Kudritzki, Becker 2006, AA
445, 1099
19
Hd
h Leo
Przybilla, Butler, Kudritzki, Becker 2006, AA
445, 1099
20
? Leo, H?
Przybilla, Butler, Kudritzki, Becker 2006, AA
445, 1099
21
Ionization Equilibrium
Mg I
Mg I
h Leo
22
Stellar Parameter Determination Teff
h Leo
Mg I
Mg I
Ionization Equilibrium
23
Mg I
Przybilla, Butler, Kudritzki, Becker 2006, AA
445, 1099
24
Stellar Parameter Determination Teff
h Leo
Mg II
He I
Ionization Equilibrium
25
He I
Mg II
Przybilla, Butler, Kudritzki, Becker 2006, AA
445, 1099
26
S II/III
O I/II
Balmer lines
N I/II
Przybilla, Butler, Kudritzki, Becker 2006, AA
445, 1099
27
  • Problem with ionization equilibrium
    diagnostics for very distant objects
  • Classic spectroscopic Teff-indicator ionization
    equilibrium
  • Mg I/II, Fe I/II, N I/II, O I/II, S II/III
  • Requires sufficient resolution high S/N for
    weak lines
  • Not possible for objects beyond Local Group
  • Balmer discontinuity (jump) as an alternative
  • Requires near-UV photometry / spectroscopy ( ?
    3640Å )
  • Some dependence on luminosity and on (very weak)
    metallicity

Balmer jump vs I.E.
28
hydrogen bound-free absorption
late B
opacity ??
bound-free absorption cross-section
? in Å
29
bound-free absorption edges in early type star
SEDs
Hydrogen dominant continuous absorber in B, A F
stars (later stars H-) Energy distribution
strongly modulated at the edges
Balmer
Paschen
Brackett
Vega
30
Spectral types and Balmer Jump
31
Isocontours of D_B and W?(H?) in
(Teff,log
g)-plane
DB log(F?gt3645/F?lt3645)
32
  • Classic spectroscopic Teff-indicator ionization
    equilibrium
  • Mg I/II, Fe I/II, N I/II, O I/II, S II/III
  • Requires high resolution high S/N for weak
    lines
  • Balmer discontinuity (jump) as an alternative
  • Requires near-UV photometry / spectroscopy ( ?
    3640 Å )
  • Some dependence on luminosity and on (very weak)
    metallicity

B8Ia Rigel ( ? Ori )
12500K
11500 K
12000K
Balmer jump vs I.E.
33
Przybilla, Butler, Kudritzki, Becker 2006, AA
445, 1099
34
Przybilla, Butler, Kudritzki, Becker 2006, AA
445, 1099
35
A0Ia HD20041
A2Iae Deneb ( ? Cyg )
Balmer jump vs I.E.
36
Determination of Teff with the integrated flux
method a test
Ben Granett, Rolf Kudritzki Miguel Urbaneja
2007, ApJ, in prep.
37
Motivation
Detailed NLTE model atmosphere codes
? Teff from ionization
equlibria or
Balmer Jump Are the models
correct? Systematic errors?
? need independent method to check!!!
38
Integrated flux method
Uses original definition of Teff integral over
observed SED Advantages Insensitive to details
of model atmosphere codes. Do not require high
resolution spectroscopy. Challenge Strongly
affected by interstellar extinction. The
goal Achieve 5 systematic accuracy robust to
extinction and compare with
spectroscopic Teff.
39
Method
Neglect extinction for a moment... f? observed
flux F? flux at stellar surface By
definition, the effective temperature,
following Stefan-Boltzmann, is,
Angular size
40
Method
?N2 2 (f?/F?)
Use model flux for F? at V-band FV
but FV(Teff) ? Iteration required
41
Iteration
start with guess for Teff
42
Solution by iteration
Angular size
Temperature
43
Application data ingredients
The photometric data available are IUE
spectrum (1150-3350A) Optical-mid IR broadband
photometry (Johnson BVRIJKL, Geneva B B1 V V1
G, 2MASS JHK, Cousins VRI.) We have a sample
of nine A - supergiant stars.
44
Data ingredients
IUE
photometry
45
SED reconstruction
We extrapolate the full SED from power law fits
of the data. The Balmer jump is approached from
both sides.
power-law
exponential
46
Interstellar extinction and reddening
E(B-V) ? slope of A? A? small in IR ? with
O/IR photometry and model SED ? ? and E(B-V)
Note A? depends also on RV
AV/E(B-V) usually RV 3.1
is adopted
Extinction (magnitudes)
E(B-V)
Log wavelength (A)
Cardelli et al (1989)
47
Iteration procedure
RVAV/E(B-V)3.1
Set Teff
Interpolate model atm
Fit angular size E(B-V) with photometry
Deredden
Integrate
48
Rigel, for example
Rigel
IUE
Optical photometry
O/IR is in Rayleigh-Jeans tail of SED ?
independent of Teff ? E(B-V) ?
J
L
K
49
Results
Rv3.1 assumed
Not a nice result, however
50
Interstellar extinction and reddening
RV 3.1 commonly used for A? , but dust
properties vary dramatically with
environment. HII regions ? 2 lt RV lt 5 Note
this is ignored in almost all extragalactic and
cosmology work!!!!
Extinction (magnitudes)
E(B-V)
Log wavelength (A)
Cardelli et al (1989)
51
Interstellar extinction
Extinction (magnitudes)
RV
E(B-V)
Log wavelength (A)
Rv describes the amplitude and shape.
Cardelli et al (1989)
52
Fitting extinction law and E(B-V)
We can use the optical and IR photometry to fit
the interstellar extinction law.
53
Fitting extinction
6000A
E(B-V)0.5
Extinction (magnitudes)
fit Rv here
fit E(B-V) here
0.2
0.05
54
Iteration procedure
Vary Rv for minimum scatter
Set Teff
Interpolate model atm
Fit angular size E(B-V) with photometry
Deredden
Integrate
55
Error analysis
We explore random errors with simulations on
synthetic data. At fixed Rv, uncertainty in the
final solution is 2. Uncertainty in Rv
dominates, But 5 accuracy possible.
Effective temp
Angular size
E(B-V)
Goodness of fit
Rv
56
Rigel, for example
Rigel
IUE
Optical photometry
O/IR is in Rayleigh-Jeans tail of SED ?
independent of Teff ? E(B-V) RV ?
J
L
K
57
Results
with best-fit Rv
58
Integrated flux solutions
Results
59
Summary
We have a robust method to determine effective
temperature to 5 accuracy allowing for
variations in interstellar extinction.
60
Summary
We have a robust method to determine effective
temperature to 5 accuracy allowing for
variations in interstellar extinction. Plus, the
method is only weakly model dependent, and
complements spectroscopic techniques.
61
Summary
We have a robust method to determine effective
temperature to 5 accuracy allowing for
variations in interstellar extinction. Plus, the
method is only weakly model dependent, and
complements spectroscopic techniques. Teff from
Integrated Flux Method agrees with spectroscopic
and Balmer Jump determinations within the error
limits. Note method does not work well for
early B-stars or O-stars, since
un-observable FUV and EUV contributes most to
flux integral. RV can be different from
3.1!!!
62
Blue supergiants diagnostics
  • Confidence in determination of Teff and log g
  • ?Teff/Teff 4 and ?log g 0.05
  • determination of chemical abundances

63
Chemical composition
  • Very detailed model atoms
  • New atomic data (radiative/collisional)
  • Opacity Project (Seaton et al. 94 and follow-up)
  • IRON Project (Hummer et al. 93 and follow-up)
  • ? ? log N(element) / N(H) 0.1

64
Recent Improvements on Atomic Data
  • requires solution of Schrödinger equation
  • for N-electron system
  • efficient technique
  • R-matrix method in CC approximation
  • Opacity Project Seaton et al. 1994, MNRAS, 266,
    805
  • IRON Project Hummer et al. 1993, AA, 279,
    298
  • accurate radiative/collisional
    data
  • to 10 on the mean

65
Confrontation with Reality
Photoionization
Electron Collision
Nahar 2003, ASP Conf. Proc.Ser. 288, in press
Williams 1999, Rep. Prog.
Phys., 62, 1431
ü high-precision atomic data ü
66
Improved Modelling for Astrophysics
e.g. photoionization cross-sections for carbon
model atom
Przybilla, Butler Kudritzki 2001b, AA, 379, 936
67
N I/II Model Atom N I 235 levels / 89 terms
757 radiative transitions 210
detailed collisions N II 151 levels / 77 terms
539 radiative transitions 242
detailed collisions Przybilla Butler
2001c, AA, 379, 955
68
NLTE departure coefficients
biniNLTE/niLTE light a-process
elements overpopulation of metastable
levels Iron Group overionization
Przybilla Butler 2001c, AA, 379, 955
69

log ni/niLTE
FeII
Przybilla, Butler, Kudritzki, Becker, AA, 2005
70
Spectrum synthesis
71
Abundance Determination CNO 1
? free from systematic effects
72
Abundance Determination CNO 2
? small uncertainties
73
C
? Leo (A0 Ib)
N
O
log x/H 12
S
Ti
Fe
log W? (mÅ)
Przybilla, Butler, Kudritzki, Becker 2006, AA
445, 1099
74
Spectral diagnostics of A-supergiants
75
M31 A-supergiant line info 1
Ba II
Ti II Fe II Ti II Cr
II Ti II Ti II Fe I Cr I Fe I Cr I
Cr II
Cr II Fe II Fe II Cr II
O I
76
Id 2
Ba II
Ti II Fe I S II
Fe I
Sc II
Fe II Fe I S II Fe II Fe
I S II
77
Id 3
Y II
S II Ti II
Cr I Fe II
Ti II Fe I Fe I Ti
II Fe II Mg I Mg I Mg I Ti II
78
  • Abundance Determination The Whole Picture
  • redundancy from multiple parameter indicators in
    NLTE
  • removed systematic errors
  • reduced statistical uncertainties
  • consistency in heavy element abundances in NLTE
  • abundance pattern for He, C, N ? mixing signature
  • stellar evolution models with rotation
  • Meynet Maeder 2000, AA, 361, 101
  • Heger Langer 2000, ApJ, 544, 1016

79
Abundance Determination
80
Abundance Determination
81
(No Transcript)
82
Pitfalls _at_ high luminosity diagnosis from
inappropriate LTE analysis - metal poor
- a-enhancement NLTE mandatory for
highly luminous objects

83
Spectroscopy of blue supergiants in the Local
Group
an incomplete list of recent studies beyond the
Magellanic Clouds
NGC 6822 Venn, Lennon, Kaufer, Kudritzki et al.,
2001, ApJ 547, 765 2 A supergiants (VLT/UVES
Keck/Hires) Muschielok, Kudritzki, Appenzeller
et al., 1999 AA Letters 352, 40 3 B supergiants
(VLT/FORS)
84
Local Group Neighbourhood
Grebel 1999, Proc. IAUS 192, 17
85
NGC 6822
86
Spectroscopy of blue supergiants in the Local
Group
spectrum synthesis with 12log(O/H)8.5, 8.7 8.9
a-elements O, Mg, Si Fe-group elements Fe, Cr,
...
Venn, Lennon, Kaufer, Kudritzki et al. 2001
87
Local Group Neighbourhood
Grebel 1999, Proc. IAUS 192, 17
88
Other dwarf galaxies
Sextans A Kaufer, Venn, Tolstoy, Kudritzki et
al., 2004 AJ 127, 2723 3 A-type supergiants
(VLT/UVES)
WLM Venn, Tolstoy, Kaufer, Kudritzki et al.,
2003 AJ 126, 1326 2 A-type supergiants
(VLT/UVES)
89
WLM
  • infall of metal-poor gas?
  • spatial variations?

SMC
HII region
Venn, Tolstoy, Kaufer, Kudritzki et al. 2003
Lee, Skillman Venn 2005
90
Local Group Neighbourhood
Grebel 1999, Proc. IAUS 192, 17
91
The metallicity gradient of M33
from A B supergiants

92
M33 B-supergiant
M33 UIT103 (B0.7Ia) ESI/Keck II R5000 S/N80
a/H-0.4 dex
Urbaneja, Herrero, Kudritzki et al., 2005, ApJ
635, 311
93
M33 0755 A1-A2 I ISIS/WHT R5000
94
M33 O/H gradient
Stars H II regions (from Vilchez et al. 1998)
Urbaneja, Herrero, Kudritzki et al., 2005, ApJ
635, 311
95
N
B
E
N
B
E
Recent work with ESI/Keck in center of M33
96
ESI/Keck Oct 2005
97
Oxygen gradient in M33
98
Spectral resolution for extragalactic
studies
  • massive stars have angular momentum ? vrot?sin i
  • even A supergiants still have v?sin i 30 to 50
    km/s
  • ? FWHM (metal lines) 1 A
  • ? with ?? 1 A and good S/N very accurate
    work
  • possible
  • ?? 2 A optimum for work beyond Local Group
  • ? Teff 2, ? log g 0.05, abundances 0.1
    to

  • 0.2 dex
  • ?? 5 A with FORS _at_ VLT
  • ? Teff 4, ? log g 0.05, metallicity
    0.2 dex
  • use Balmer jump for Teff

99
Spectrum synthesis from high resolution ...
... to ...
100
... intermediate resolution
? ? log e 0.2 dex feasible
101
The Araucaria Project some results
NGC 300 Sculptor Group (2 - 4 Mpc)
102
The Araucaria Project recent results
NGC 300 cepheids optical (V,I) P-L relation
LMC slope
ESO 2.2m LCO 1.3m CTIO 4m
Gieren, Pietrzynski, Walker, Bresolin, Kudritzki
et al. 2004
103
The Araucaria Project recent results
VLTISAAC
  • NGC 300 cepheids
  • near-IR (J,K) P-L relation
  • small absorption corrections
  • reduced width of instability strip
  • reduced amplitudes

Gieren, Pietrzynski, Soszynski, Bresolin,
Kudritzki et al. 2005
104
The Araucaria Project recent results
(m-M) 26.37 D 1.88 Mpc E(B-V) 0.10
Gieren, Pietrzynski, Soszynsk, Bresolin,
Kudritzkii et al. 2005
105
Cycle 11 HST/ACS imaging
Effects of crowding Studied using HST/ACS
photometry
106
Cycle 11 HST/ACS imaging
107
Cycle 11 HST/ACS imaging
Distance from TRGBRizzi, Bresolin, Kudritzki et
al., 2005, ApJagrees with Cepheids
108
Bresolin, Gieren, Kudritzki et al. 2002 ApJ 567,
277
109
NGC 300 spectral classification
Galactic template
V 19.0
NGC 300 A2 supergiant
Galactic template
Bresolin, Gieren, Kudritzki et al. 2002, ApJ 567,
277
110
NGC 300 2 Mpc
111
Cycle 11 HST/ACS imagingblue supergiantsBresolin
et al. 2005
112
  • A grid of NLTE model calculations
  • Late-B (B6) to mid-A (A3/A5)
  • Luminosity class Ia to Ib/II
  • 12 metallicities Z/Z_sun
  • 2.0, 1.4, 1.0, 0.7, 0.5, 0.4, 0.3, 0.25, 0.2,
    0.14, 0.1, 0.05
  • Chemical composition
  • H,He,C,N,O,Mg,S,Ti,Fe
  • Ne,Na,Al,Si,P,K,Ca,Sc,V,Cr,Mn,Co,Ni,Cr,Zn,Sr,Y,Zr,
    Ba
  • 20000 models in total

The grid
113
Determination of Teff
Low resolution spectra
? cannot use ionization equilibria Can we
just use relation between spectral
type and Teff ???
114
Teff -scale of B8-A4 Ia
supergiants
Kudritzki, Bresolin, Przybilla, 2003,
ApJ Letters, 582, L83
A2
B8
A0
A4
115
A problem ???
  • spectral type - Teff relationship
  • metallicity
    dependent???
  • ? lower metallicity stars cooler
  • _at_ same
    spectral type
  • ? higher hotter
  • spirals have abundance gradients !!!!

116
Example two models
Teff 9500 K, log g 1.20, Z 0.0
8750 1.00 -0.3
Identical spectrum metal lines Balmer lines !!!
117
definitely a problem !!!!
  • spectral type - Teff relationship
  • metallicity
    dependent !!!
  • ? lower metallicity stars cooler
  • _at_ same
    spectral type
  • ? higher hotter
  • spirals have abundance gradients !!!!
  • could be devastating for low resolution
    diagnostics!!!

118
A solution ???
  • Balmer jump DB a Teff diagnostic ???

119
Example two models
Teff 9500 K, log g 1.20, Z 0.0
8750 1.00 -0.3
Balmer jumps are different !!!
120
Example two models
Teff 9500 K, log g 1.20, Z 0.0
8750 1.00 -0.3
Balmer jumps are different !!!
121
Isocontours of D_B and W?(H?) in
(Teff,log
g)-plane
DB log(F?gt3645/F?lt3645)
122
Przybilla, Butler, Kudritzki, Becker 2005, AA
123
  • Classic spectroscopic Teff-indicator ionization
    equilibrium
  • Mg I/II, Fe I/II, N I/II, O I/II, S II/III
  • Requires high resolution high S/N for weak
    lines
  • Balmer discontinuity (jump) as an alternative
  • Requires near-UV photometry / spectroscopy ( ?
    3640 Å )
  • Some dependence on luminosity and on (very weak)
    metallicity

B8Ia Rigel ( ? Ori )
12500K
12000K
11500 K
Balmer jump vs I.E.
124
Przybilla, Butler, Kudritzki, Becker 2005, AA
125
A solution ???
  • Balmer jump DB a Teff diagnostic ??? ? yes
  • do models reproduce DB ??? ? yes
  • DB by spectrophotometry from the ground???

126
A Ia in WLM high res study ? Teff 8300K
compare with DB from low res FORS/VLT spectrum
yellow 8300K pink 8500K blue 8750K
  • ?Very good
  • temperature
  • resolution

127
A solution ???
  • Balmer jump DB a Teff diagnostic ??? ? yes
  • do models reproduce DB ??? ? yes
  • DB by spectrophotometry from the ground??? ?
    yes
  • well, then lets try beyond Local Group.

128
Example early A supergiant
Kudritzki, Bresolin Urbaneja et al. 2007
A2 Ia Teff 9250 K log g 1.45
HST/ACS ground
129
Balmer jump fitting
Teff 9000K
130
Balmer jump fitting
Teff 9250K
131
Balmer jump fitting
Teff 9750K
132
Balmer jump fitting
Teff 9000K
133
Balmer series fitting
134
Balmer line fitting
H?
135
Balmer line fitting
Hd
136
Balmer line fitting
H8
137
Balmer line fitting
H9
138
Balmer line fitting
H10, 11
139
Another example late B supergiants
B8 Ia Teff 11750 K log g 1.95 E(B-V) 0.06
HST/ACS ground
140
Balmer jump fitting a late B Ia
Teff 12000K
141
metallicity and chemical composition
  • B supergiants ? a - elements
  • A supergiants ? a elements, iron group

142
NGC 300 metal abundances
B3 Ia Teff 17000 log g 2.0 0.6 X solar Z
Urbaneja, Herrero, Bresolin, Kudritzki et al. 2005
143
(No Transcript)
144
Metallicity
Z -0.3,-0.5
145
Metallicity spectral window
146
Spectral window 4497-4607Å
B9 Ia Teff 10000K log g 1.75
147
Spectral window 4497-4607Å
148
Spectral window 4497-4607Å
149
?i spectral window 4497-4607Å
150
another spectral window
151
Spectral window 4117-4197Å
152
?i spectral window 4117-4197Å
153
another spectral window
154
Spectral window 4284-4322Å
155
?i spectral window 4284-4322Å
156
another spectral window
157
Spectral window 4438-4497Å
158
?i spectral window 4438-4497Å
159
?i all windows ? Z -0.40.1
160
(No Transcript)
161
Spectral window 4117-4195Å
A3 Ia Teff 8500K log g 1.65
162
?i spectral window 4117-4195Å
163
Spectral window 4360-4426Å
164
?i spectral window 4360-4426Å
165
?i all windows ? Z -0.50.15
166
(No Transcript)
167
Spectral window 4495-4610Å
A1 Ia Teff 9250K log g 1.60
168
?i spectral window 4495-4610Å
169
?i all windows ? Z -0.650.15
170
(No Transcript)
171
Spectral window 4497-4610Å
172
?i spectral window 4497-4610Å
173
Spectral window 3995-4085Å
174
?i spectral window 3995-4085Å
175
?i all windows ? Z -0.150.10
176
(No Transcript)
177
(No Transcript)
178
Wolf-Rayet star in NGC 300
WN11 star
emission line diagnostics first detailed
abundance pattern outside Local Group
Bresolin, Kudritzki, Najarro et al. 2002, ApJ
Letters 577, L107
179
NGC 300 WN11 star
non-LTE line-blanketed hydrodynamic model
atmospheres with stellar winds
stellar parameters wind parameters H, He, CNO,
Al, Si, Fe abundances
Bresolin, Kudritzki, Najarro et al. 2002, ApJ
Letters 577, L107
180
NGC 300 WN11 star
181
NGC 300 nebular vs stellar abundances
stellar O abundance gradient
Urbaneja, Herrero, Bresolin, Kudritzki et al.
2005, ApJ 622, 862
182
Stellar metallicity gradient in NGC300
B0 B3 supergiants ? B8 A4 supergiants
--- Z -0.03 0.45?/?0
-0.03 0.08d/kpc ?0 9.75 arcmin
5.7kpc Z log(Z/Z_sun)
Kudritzki, Urbaneja, Bresolin, Przybilla, Gieren,
Pietrzynski, 2007, in prep.
183
Comparison with nebular abundances
Pagel, Edmunds, Blackwell et al. 1979
184
Comparison with nebular abundances
Bresolin, Garnett Kennicutt 2004
see also Bresolin, Schaerer, Gonzalez Delgado
Stasinska 2005
185
Comparison with nebular abundances
Bresolin, 2006
186
NGC 300
  • Different R23 and N2 calibrations
  • HII em. line fluxes from Deharveng et al. (1988)

N2 calibration
187
Stellar vs. HII metallicity gradient
---- Dopita Evans (1986)
---- Kobolnicky et al. (1999)
---- Denicolo et al. (2002)
---- Pilyugin (2001)
---- Pettini Pagel (2004)
---- Zaritsky et al. (1994)
Almost identical with stellar regression!!!!
188
NGC 300
189
Stellar vs. HII metallicity gradient
---- Dopita Evans (1986)
---- Kobolnicky et al. (1999)
---- Denicolo et al. (2002)
---- Pilyugin (2001)
---- Pettini Pagel (2004)
---- Zaritsky et al. (1994)
Almost identical with stellar regression!!!!
190
Future chemical abundances work
  • low resolution diagnostics of individual
    elements
  • gradients of abundance patterns (a/Fe, etc.)
  • more galaxies
  • interpretation ? galaxy evolution, SH history
    etc.

191
4500Å
4660Å
  • Teff, logg, metallicity
  • Identify spectral features that provide
    information about individual elements
  • Fe
  • Ti
  • Cr

full spectrum
Fe subtracted
Ti subtracted
Cr subtracted
Ba
Ba subtracted
Low Spectral Resolution
192
4500Å
4660Å
  • S/NR limitations
  • minimum metallicity
  • spectral type metallicity
  • hotter and/or more luminous objects have weaker
    lines

S/N200
S/N50
S/N30
S/N15
Z - 1.0
Z 0.0
Z - 0.3
8300 K, 1.20 dex
8300 K, 1.20 dex
9750K, 1.30 dex
Low Spectral Resolution SNR
193
  • low resolution spectra of A and B supergiants
    allow for diagnostics with reasonable accuracy
  • ALL the fundamental stellar parameters (Teff, log
    g, chemical composition, distance, radius,
    luminosity, mass-loss rates) and interstellar
    reddening, extinction and reddening law can be
    derived from the spectra (and accurate
    photometry)
  • What can be pursued (scientific goals) depends
    primarily on the signal-to-noise
  • Teff and logg can be easily derived with S/N 15
  • Distance determinations (FGLR)
  • Abundance analysis is more demanding (telescope
    time)
  • S/N 30 to 50 is required for metallicities of
    the order of SMC metallicity ( 0.3 solar)
  • The lower the metallicity, the larger the S/N
    required
  • M101, V 22.5 mag (Mv -7.5 mag) requires 16
    hours _at_ Keck (S/N50)

  • 6
    30

Closing thoughts
194
Future chemical abundances work
  • low resolution diagnostics of individual
    elements
  • gradients of abundance patterns (a/Fe, etc.)
  • more galaxies
  • interpretation ? galaxy evolution, SH history
    etc.

195
NGC 3621 7 Mpc HST/ACS Bresolin, Kudritzki,
Mendez Przybilla 2001 19 blue supergiant
candidates (VLT/FORS) 4 analyzed
196
Galactic template
NGC 3621 A0 supergiant
NGC 3621 Bresolin, Kudritzki, Mendez
Przybilla 2001 19 blue supergiant candidates
(VLT/FORS) 4 analyzed
Galactic template
Bresolin, Kudritzki, Mendez, Przybilla 2001, ApJ
Letters 548, L159
197
Galactic template F0 Ia
NGC 3621 F1 Ia
NGC 3621 Bresolin, Kudritzki, Mendez
Przybilla 2001 19 blue supergiant candidates
(VLT/FORS) 4 analyzed
Galactic template F2 Ia
Bresolin, Kudritzki, Mendez, Przybilla 2001, ApJ
Letters 548, L159
198
Bresolin, Kudritzki, Mendez, Przybilla 2001, ApJ
Letters 548, L159
199
Teff 10000K, L 3.1 105 Lsun
mass fraction X/Xsun H
0.688 0.97 He 0.301
1.06 Mg 1.5 10-4
0.22 Fe 1.5 10-3 1.08
LBV
Najarro, Urbaneja, Kudritzki, Bresolin 2005
200
Blue supergiants as distance
indicators
  • 2 major problems with Cepheids
  • Interstellar extinction
  • Metallicity dependence of PL-rel.
  • Spectroscopic distance
  • indicator needed !!!

201
Why more stellar distance indicators?
  • 2 major problems with
  • photometric methods
  • Interstellar extinction
  • Metallicity dependence
  • Spectroscopic distance
  • indicator needed !!!

202
Flux weighted Gravity Luminosity Relationship
(FGLR)
Kudritzki, Bresolin, Przybilla, ApJ Letters, 582,
L83 (2003)
L,M const.
B4-A4
M gR2 L(g/T4) const.
const.
with L Mx Lx(g/T4)x, x 3
? L1-x (g/T4)x or with Mbol
-2.5log L Mbol a log(g/T4) b (FGLR)
a 2.5 x/(1-x) 3.75
203
Theoretical Flux weighted Gravity
Luminosity Relationship (FGLR)
L,M const.
B4-A4
take evolutionary tracks and plot Mbol
f(g/T4) ?
204
Outline
a 3.75
FGLR from stellar evolution tracks by Maeder
Meynet, 2000 ? Z Zgal with rotation ?
ZSMC with Zgal no ? ZSMC no
205
Example early A supergiant
Kudritzki, Bresolin Urbaneja et al. 2007
A2 Ia Teff 9250 K log g 1.45
HST/ACS ground
206
Balmer series fitting
207
FGLR first test
Spectra in Milky Way, LMC, SMC NGC 6822, M31,
M33 NGC 300, NGC 3621
A0 Ia in NGC 300 Fit of Balmer lines 2 models
with ? log g 0.05
Kudritzki, Bresolin, Przybilla, ApJ Letters, 582,
L83 (2003)
208
Flux weighted gravityluminosity
relationship first
results
Mbol 3.85 log(g/T4eff,4) 13.73
  • 0.26
  • NGC 300
  • NGC3621

Kudritzki, Bresolin Przybilla (2003)ApJ
Letters, 582, L83
209
Flux weighted gravityluminosity
relationship first
results
Mbol 3.71 log(g/T4eff,4) 13.49
  • 0.26

Kudritzki, Bresolin Przybilla, 2003,ApJ
Letters, 582, L83
210
FGLR NGC300 B-type Sgs
Urbaneja, Bresolin, Kudritzki et al., 2005,ApJ
211
Flux weighted gravityluminosity
relationship new results
FGLR Local Group NGC 300, NGC 3621
Kudritzki, Bresolin Przybilla, 2003,ApJL, 582,
L83 Kudritzki, Urbaneja, Bresolin et al., ApJ,
2006
Mbol 3.27 log(g/T4eff,4) 13.02
  • 0.22

212
FGLR Local Group, NGC300 NGC3621
Kudritzki, Bresolin Przybilla, 2003,ApJL, 582,
L83 Kudritzki, Urbaneja, Bresolin et al.,
ApJ, 2007, in prep.
Mbol 3.75 log(g/T4eff,4) 13.73
  • 0.24

213
FGLR Local Group, NGC300 NGC3621
214
FGLR including WLM
215
Supergiant photometric variability
  • blue supergiants reported to be variable
  • reviews by Sterken (1989), van Genderen
    (2001)
  • non-radial oscillations
  • Maeder (1986), Baade (1992)
  • variable winds
  • Kaufer et al.(1996, 1997), Rivinius et
    al. (1997)
  • Stahl et al.(2003)

How does photometric variability
affect the FGLR??
216
A photometric study in NGC 300
  • 6 months, 29 nights study with ESO 2.2m WFI
  • original goal detect Cepheids in NGC 300
  • by-product systematic study of
  • photometric variability of
  • blue
    supergiants

  • _at_ 2 Mpc

217
standard deviation from mean magnitude vs. mean
magnitude
M supergiant
  • standard stars
  • . . . 2s
  • - - - 1s

Bresolin, Pietryzynski, Gieren,
Kudritzki, Przybilla, Fouque, 2004, ApJ 600,
182
218
light curves (V,B) 6 months, 29 nights
Bresolin, Pietryzynski, Gieren,
Kudritzki, Przybilla, Fouque, 2004, ApJ 600, 182
219
2 periodic objects spectral type A2 Ia
Bresolin, Pietryzynski, Gieren,
Kudritzki, Przybilla, Fouque, 2004, ApJ 600,
182
220
Effects of photometric variability
  • ?m small, s 0.07 mag per object
  • maximum zero point shift through all 29 epochs
  • 0.05 mag
  • FGLR robust against
  • photometric
    variability!

221
Conclusions
  • blue supergiants excellent distance indicators
  • tight relationship FGLR
  • methods based on spectroscopy
  • ? precise intrinsic properties
  • Teff, log g, chemical composition, SEDs,
    colors
  • ? reddening, extinction

222
Conclusions
  • multiplicity, crowding ? less important
  • much
    brighter
  • spectroscopy
    helps to identify
  • contaminating
    sources
  • potential ? quantitative spectroscopy
  • possible down to mV 22.5
    mag
  • ? with objects MV - 8 mag
  • m M 30.5 mag possible, maybe
    beyond
  • 10 objects per galaxy ? ?(m-M)
    0.1 mag

223
Future work
  • careful calibration of FGLR and WLR
  • using Local Group
    galaxies
  • application of methods to determine
  • distances to crucial galaxies between
  • Local Group and Virgo/Fornax clusters

224
The Araucaria Project
improve the calibration of the environmental
dependences of several stellar distance indicators
Cepheids RR Lyrae Red
clump stars Blue supergiants
Wolfgang Gieren Concepción, Chile Grzegorz
Pietrzynski Igor Soszynski Rolf Kudritzki IfA,
Hawaii, USA Fabio Bresolin Miguel Urbaneja Dante
Minniti Universidad Católica, Chile Jesper
Storm Potsdam, Germany
225
The Araucaria Project
TARGETS IC 1613 NGC 6822 WLM NGC 3109
LOCAL GROUP
NGC 300 NGC 7793 NGC 247 NGC 55
SCULPTOR GROUP
226
Local Group Neighbourhood
Grebel 1999, Proc. IAUS 192, 17
227
WLM
WLM faintest dwarf irregular in LG few HII
regions O -0.8
228
WLM
  • infall of metal-poor gas?
  • spatial variations?

SMC
HII region
Venn, Tolstoy, Kaufer, Kudritzki et al. 2003
Lee, Skillman Venn 2005
229
WLM Araucaria VLT/FORS 35 targets
Additional Araucaria dwarf galaxies with FORS
spectra IC 1613 NGC 3109
230
Bresolin, Pietrzynski,Urbaneja,
Gieren, Kudritzki, Venn, 2006, ApJ 648, 1007
WLM new results
A-supergiant Fe -0.6
Kudritzki, Urbaneja, Bresolin et al. 2007
B-supergiant O -0.8
Mg -0.8 Si
-0.6 N -0.1
C -1.9
B-supergiant O -1.0
Mg -0.8 Si
-0.6 N -0.5
C -1.4
B-supergiant O -0.8
Mg -0.6 Si
-0.7 N -0.5
C -1.9
For all 3 B-supergiants O in
agreement with HII regions!!!
231
FGLR including WLM, m-M 24.84 (McConacchie et
al. 2005, TRGB)
232
FGLR including WLM, m-M 24.84 (McConacchie et
al. 2005, TRGB)
New Cepheid distance m-M 25.14 Pietrzynski
et al. 2007
233
Local Group Neighbourhood
NGC 3109 dark matter dominated dwarf stellar
photometry ? low Z?
Grebel 1999, Proc. IAUS 192, 17
234
Pietrzynsky, Gieren, Bresolin, Kudritzki et al.,
ApJ, 2006
NGC 3109 New Cepheid distance
235
Evans,Bresolin,Urbaneja,Pietrzynsky, Gieren,
Kudritzki et al., ApJ, 2006
X log(X/H)-log(X/H)sun O -0.9 N
-0.2 Mg -0.7 Si -0.7
B-supergiants model atmosphere fits
spectral analysis
X log(X/H)-log(X/H)sun O -1.1 N
-0.6 Mg -0.7 Si -0.7
NGC 3109 New results
? stellar vrad along major axis HI rotation
curve --- Ha rotation curve
O-stars
Late B- early A- supergiants
Early B-supergiants
Early B-supergiants
A-supergiants
236
The Araucaria Project
TARGETS IC 1613 NGC 6822 WLM NGC 3109
LOCAL GROUP
M81 NGC 2403
M81 GROUP
NGC 300 NGC 7793 NGC 247 NGC 55
SCULPTOR GROUP
237
N3621
238
Additional Araucaria galaxies Sculptor
Luca Rizzi, IfA, Hawaii
239
Additional Araucaria galaxies Sculptor
FORS spectra NGC 55 ( 200 spectra) NGC 247
(100 spectra) NGC 7793 ( 30 spectra)
95 stars
NGC 55
240
Mauna Kea
241
View MK ? Haleakala
242
Adaptive Optics
243
M81 CFHT 3.5 Mpc
244
M101 CFHT 6.7 Mpc
245
The Araucaria Project
improve the calibration of the environmental
dependences of several stellar distance indicators
Cepheids RR Lyrae Red
clump stars Blue supergiants
Wolfgang Gieren Concepción, Chile Grzegorz
Pietrzynski Igor Soszynski Rolf Kudritzki IfA,
Hawaii, USA Fabio Bresolin Miguel Urbaneja Dante
Minniti Universidad Católica, Chile Jesper
Storm Potsdam, Germany
246
The Araucaria Project
TARGETS IC 1613 NGC 6822 WLM NGC 3109
LOCAL GROUP
NGC 300 NGC 7793 NGC 247 NGC 55
SCULPTOR GROUP
247
WLM Araucaria VLT/FORS 35 targets
Additional Araucaria dwarf galaxies with FORS
spectra IC 1613 NGC 3109
248
The Araucaria Project
TARGETS IC 1613 NGC 6822 WLM NGC 3109
LOCAL GROUP
NGC 300 NGC 7793 NGC 247 NGC 55
SCULPTOR GROUP
249
Bresolin, Urbaneja, Kudritzki et al., ApJ, 2006
WLM new results
FGLR WLR NGC 300 other LG
B supergiant
A supergiant
250
Pietrzynsky, Gieren, Bresolin, Kudritzki et al.,
ApJ, 2006
NGC 3109 New Cepheid distance
251
N3621
252
Additional Araucaria galaxies Sculptor
Luca Rizzi, IfA, Hawaii
253
Additional Araucaria galaxies Sculptor
FORS spectra NGC 55 ( 200 spectra) NGC 247
(100 spectra) NGC 7793 ( 30 spectra)
95 stars
NGC 55
254
The next generation of 30m telescopes.
255
IAU Symposium 250 Massive Stars as Cosmic
Engines Kauai, December 10 14, 2007 SOC Paul
Crowther, Joachim Puls , RPK .. LOC Fabio
Bresolin, Miguel Urbaneja, RPK,
256
Star trails
Write a Comment
User Comments (0)
About PowerShow.com