Title: Celbiofysica voor MLW studenten
1Celbiofysica voor MLW studenten
www.mbfys.ru.nl/stan/
2Onderdelen Biofysica
- Het passieve membraan
- Hodgkin-Huxley model voor actief membraan
- Intracellulaire calcium oscillaties
- Werkcolleges en computer simulaties
3- Doelstellingen Cel-biofysica voor MLW
- Inzicht geven in passieve electrische
eigenschappen van celmembraan - Inzicht geven in de fysische principes van
ion-transport door een membraan. - Inzicht geven in spanningsafhankelijke dynamiek
van kanalen in membraan, die een rol spelen bij
functioneren van de levende cel. - Inzicht geven in dynamiek van calcium
oscillaties voor intracellulaire communicatie - Gebruik van computer simulaties om inzicht te
geven in fysiologische mechanismen van membraan
transport.
4Various types of neurons
5A cartoon of the neuron
6How does a membrane of a neuron look like ?
- Layer with phospholipids with polar head at
outside and hydrophobic tails inside. - Large proteins in phospholipid layer
7A slightly more realistic view of a membrane.
8Model neuron
9(No Transcript)
10- Membraan biofysica
- Cel krijgt input van omgeving via
- synapsen, die de permeabiliteit van membraan
veranderen, waardoor - ionen door de membraan kunnen migreren en
- de interne potentiaal van een cel verandert.
11Electricity and charges
12Bio-Electriciteit
- 2 gelijke electrische ladingen stoten elkaar af
- 2 verschillende electrische ladingen trekken
elkaar aan
13Electric field
Q charge (Coulomb) r distance E electric
field V potential (Volt)
r
Q
E 1/(4pe) Q/r2 V 1/(4pe) Q/r
14Force on charge in electric field
Q charge (Coulomb) r distance E electric
field V potential (Volt) e di-electric
constant
Q2
r
Q1
E 1/(4pe) Q1 /r2 F Q2 E 1/(4pe) Q1 Q2 /r2
15Model neuron
16Ohms law for a resistor
V Potential difference (Volt) R Resistance I
Current (Ampere) g 1/R conductance VI.R I
V/RgV
R
V
I
17Voorbeeld
I
Batterij
6V
R3 Ohm
-
I V/R 6/3 2 Ampere
18Serie van weerstanden
RR1R2R3 1/g1/g1 1/g2 1/g3 1/R 1/R1
1/R2 1/R3 g g1 g2 g3
19Voorbeeld 1
Een axon van de Reuze Inktvis heeft straal van
0.25 10-3 m en een specifieke membraan
geleidbaarheid van 1.4 10-3 S/cm2. Hoe groot is
de geleidbaarheid van een stukje axon met lengte
1 cm ? Oppervlak van het axon A 2pr l 2p
(0.25 10-1 cm)(1 cm) 0.16 cm2 G sA 1.4
10-3 A 1.4 10-3 x 0.16 2.2 10-4 (S) Weerstand
R 1/(2.2) 104 (Ohm)
20Voorbeeld 2
Geleidbaarheid van een stuk axoplasma van de
reuze inktvis met lengte 1 cm is 3.3 10-2
S/cm. Hoe groot is de geleidbaarheid van een stuk
axon van lengte 10 cm en met straal 0.025 cm
? gsA/L 3.3 10-2 (S/cm) x p (0.025)2 (cm2)/(10
cm) 6.5 10-6 (S) R 1/g 1/(6.5) 106 (Ohm)
21Capacitor
C eA/d
22Capacitor
Q Charge (Coulomb) V Potential difference I
current (Ampere) dQ/dt C Capacitance (Farad)
I
V
C
QCV I dQ/dt C dV/dt
23Current through an ion channel
24Electrical equivalent
Biology
R
I1
I2
I
I I1 I2
25Current through membrane
R
I I1 I2 V/R C dV/dt
I1
I2
I
I I1 I2
26Current through an ion-channel
0 mV
C
I
I
V mV
Ohms law
Q C V I dQ/dt C dV/dt
Q charge C capacitance
Conductance G1/R
27Current through Resistor and Capacitance
V
I
I V/R
R
V
I
C
IC dV/dt
28Resistor and Capacitance in parallel
I
I1
I2
V
I
I2
I1
time
29Resistor and Capacitance in parallel
I I1 I2 V/R C dV/dt Als I0 voor tlt0 en
II0 voor tgt0 V(t) RI0 (1 - e - t / RC)
I
I1
I2
I
V
time
30Stroom door membraan
Geleidbaarheid van membraan van 1 cm lengte 2 p
rsm Stroom in lengte richting door membraan
gradient van potentiaal x geleidbaarheid per
lengte eenheid van het axoplasma Il -p r2 s
dV/dx Stroom door het membraan Im - dIl /dx p
r2 s d2 V/dx2 Maar ook Im 2p r sm V (V
buitenmembraan 0) 2p r sm V p r2 s d2 V/dx2 ?
31- Electrical potential within the cell is at - 80
mV with respect to outside. - Across the membrane, there is a potential
difference of -80 mV.
32The passive membrane
- As a first step to understand the electrical
properties of the membrane, we will consider the
membrane as a passive system with diffusion of
ions due to - different concentrations of ions at both sides
of the membrane - potential difference across the membrane
33Nernst equation
- Gives a relation between
- concentration difference of ions
- potential difference
- in equilibrium.
34Passive diffusion
Flux is defined as the current per unit
area. Flux is given by J P( C I - C II
) with Ci is concentration in medium I P is
permeability
35Osmose diffusion Balance between concentration
and pressure gradient
Osmotic pressure difference ?p is defined by ?p
RT ?C with T temperature ?C
difference in concentration R gas
constante (8.3 J/(K mol))
36Flux tgv concentratie verschil en potentiaal
gradient
Concentratie verschil
Potentiaal gradient
37Flux tgv concentratie verschil en potentiaal
gradient op positie x in het membraan
C1 V1
C2 V2
Tgv potentiaal gradient
tgv concentratie gradient
38Flux tgv concentratie verschil en potentiaal
gradient in evenwicht
C1 V1
C2 V2
39Nernst Equation
The Nernst equation relates the potential
difference to the concentration difference in
equilibrium Ci / Co exp - Z e (Vi -Vo )/kT
or Vi - Vo (kT/Ze) ln (Co/Ci) with e charge
electron Z valence of ion k Boltzmann
constant T temperature Ci (Co) concentration
inside (outside) membrane
40Example of Nernst equation
t0
t gtgt 0
Na 100 Cl 100
Na 10 Cl 10
Na 55 Cl 55
Na 55 Cl 55
?V 0
?V 0
If both Na and Cl- can migrate through the
membrane
41Example of Nernst equation
t0
t gtgt 0
R 50 Na 50 Cl- 100
Na 100 Cl- 100
R 50 Na 64 Cl- 110
Na 86 Cl- 90
?V 0
?V 0
If both Na and Cl, but not R can migrate through
the membrane.
42Nernst equation for squid axon
43Caveats regarding Nernst equation
- considers only a single ion.
- If multiple ions are involved, it assumes
equal permeability for all ions - Applies only to passive transport
- ions migrate independently of each other
44Goldman/Hodgkin/Katz equation
The Nernst equation relates the potential
difference to the concentration difference in
equilibrium for a single neuron. When several
ions are involved, we obtain for equilibrium
Pk KoPNaNaoPClCli ?V (RT/F) ln
--------------------------------- Pk
KiPNaNaiPClClo with Pi permeability of
ion i Ki/o concentration inside/outside F
Faraday constant T temperature ?V
potential difference across membrane
45Current through an ion channel
46Current through an ion-channel
0 mV
C
I
I
V mV
Ohms law
Q C V I dQ/dt C dV/dt
Q charge C capacitance
Conductance G1/R
47Current through Resistor and Capacitance
V
I
I V/R
R
V
I
C
IC dV/dt
48Resistor and Capacitance in parallel
I
I1
I2
V
I
I2
I1
time
49Resistor and Capacitance in parallel
I I1 I2 V/R C dV/dt Als I0 voor tlt0 en
II0 voor tgt0 V(t) RI0 (1 - e - t / RC)
I
I1
I2
I
V
time
50Electrical scheme of passive membrane
51The active membrane
- The membrane is not passive, but has active
properties - Active Na /K pump
52Schematic overview of the active membrane
53Current through an ion-channel
0 mV
R
I
I
Vion
V mV
Ohms law
I (?V - Vion )/R G (?V - Vion )
Conductance G1/R
54Hodgkin Huxley Current through an ion-channel
0 mV
R
I
I
Vion
V mV
Ohms law
Conductance G1/R
Conductance G is a product of maximal conductance
gCa and the fraction of open channels m3h
55Gating kinetics
State
56Gating kinetics
Open
State
57Gating kinetics
?m
Open
Closed
State
?m
m
(1-m)
Probability
?m
?m
58Gating kinetics
?m
Open
Closed
State
?m
m
(1-m)
Probability
?m
?m
Steady-state oplossing
59Gating kinetics
?m
Open
Closed
State
?m
m
(1-m)
Probability
?m
?m
Steady-state oplossing
Oplossing als functie van de tijd na stap V
met
60Gating kinetics
?m
?m
?m
Open
Closed
State
?m
m
(1-m)
Probability
?m
?m
Channel Open Probability
61Gating kinetics
?m
?m
?m
Open
Closed
State
?m
m
(1-m)
Probability
?m
?m
Merk op wat er gebeurt als en beide groter
worden !!
62Parameter fitting (2)
63Parameter fitting (2)
64Voltage dependence
65Gating kinetics
?m
Open
Closed
State
?m
m
(1-m)
Probability
?m
?m
m(t) m8 (m0 - m0)e-t/t
h(t) h8(h0 - h8)e-t/t
Channel Open Probability
m3h
66t0
m(t) m8 (m0 - m0)e-t/t
h(t) h8(h0 - h8)e-t/t
Channel Open Probability
m3h
67Na stap-vormig increment in V
m(t) m8 (m0 - m0)e-t/t
h(t) h8(h0 - h8)e-t/t
Channel Open Probability
m3h
68m(t) m8 (m0 - m0)e-t/t
h(t) h8(h0 - h8)e-t/t
Channel Open Probability
m3h
69Hodgkin Huxley Current through an ion-channel
0 mV
R
I
I
Vion
V mV
Ohms law
Conductance G1/R
Conductance G is a product of maximal conductance
gCa and the fraction of open channels m3h
gmax m3h ?V
The driving force DV is the difference between
the membrane potential V and the Nernstpotential
Vion for the ion.
gmax m3h (V-Vion)
70Membrane voltage equation
0 mV
0 mV
INa
IC
V mV
V mV
Kirchoffs law
INa gmax, Nam3h(V- VNa)
-Cm dV/dt gmax, Nam3h(V-Vna) gmax, K n4 (V-VK
) g leak(V-Vna)
71Actionpotential
72(No Transcript)
73(No Transcript)
74(No Transcript)
75How to measure membrane currents ?
76Patch-clamp recording
A Patch-clamp set-up B Bursts of outward
current (1 to 5 pA) when channel is open. Pulse
amplitude is constant. Duration varies.
77Channel specific gating
Each channel is specifically sensitive to
specific neurotransmitters, which affect the
state (open/closed) of the channel.
78Current-Voltage relation for single-channel
currents.
79Ion currents through membrane
Single-channel currents from foetal (A, C) and
adult (B, D) channels from bovine muscle (left)
and xenopus oocytes.
80Various patching techniques
81Hodgkin-Huxley model
- Fast variables
- membrane potential V
- activation rate for Na m
- Slow variables
- activation rate for K n
- inactivation rate for Na h
-C dV/dt gNam3h(V-Ena)gKn4(V-EK)gL(V-EL)
I dm/dt am(1-m)-ßmm dh/dt ah(1-h)-ßhh dn/dt
an(1-n)-ßnn
82Actionpotential
-C dV/dt gNam3h(V-Ena)gKn4(V-EK)gL(V-EL)
I dm/dt am(1-m)-ßmm dh/dt ah(1-h)-ßhh dn/dt
an(1-n)-ßnn
83Intracellulaire Calcium oscillaties
84Intra-cellular signaling
External input from other cells
85(No Transcript)
86(No Transcript)
87Cells reveal non-linear behavior
- Cell mitosis
- Gene-expression and protein synthesis
- Folding/unfolding of proteins (hormone secretion)
Discrete states Once started complete it
88NRK-cells exotic ?
- No, they are not
- Smooth-muscle cells (gastrointestinal)
- lymphatic
- vascular tissues
- heart pacemaker cells.
- urethral
- Hormone producing cells in the brain
89Growth states of NRK fibroblasts
90Growth states of NRK fibroblasts
91Growth states of NRK fibroblasts
Membrane potential
92Intracellular Ca2-oscillations
- Ca2 is a second messenger
93(No Transcript)
94Membrane oscillator
CaER
(1000 µM)
(0.1 µM)
(1000 µM)
95The basic elements are the following
- PMCA pump
- Ca L type channel
- Cl(Ca) channel
- SOC channel
- Leak channel
- Kir channel
- Ca-buffer in the cytosol
96Components of the model for the NRK Membrane
- Lek door het membraan
- Kalium kanaal
- PMCA-pomp
97Components of the model for the NRK Membrane
- SOC kanaal
- Ca L type kanaal
- Cl(Ca) kanaal
98Buffer dynamics
- with
- Kon 0.032 (microMol s)-1
- Koff 0.06 s-1
99Steady state behavior without current
- Upper left panel Cacyt (red trace), BCa
(buffered complex, blue trace) and J_PMCA (green
trace) - Upper right panel VM (blue trace)
- lower left panel ICl (red trace), ICa (black
trace), IK (green trace), Ileak(blue trace),
ICRAC (cyan trace) and Ipulse (magenta trace)
100Current clamp Ipulse3 pA
101Current clamp Ipulse6 pA
- When we current clamp, the activation gate of the
Ca L type opens, giving rise to a constant inflow
of Ca through the Ca L type channel. - As a consequence, an action potential will be
generated
102Current clamp Ipulse6 pA
103Current clamp Ipulse6 pA
Action potential
Cacyt
Plateau due to Nernst potential of Ca-dependent
Cl-channel
Inflow of Ca ions
Pump current
104Effect van aanwezigheid buffer
- Removing the buffer does affect
- Cacyt (smaller concentrations with buffer)
- AP (smaller AP with buffer)
105Current clamp Ipulse6 pA
106Current clamp Ipulse6 pA without buffer
107Model for IP3-oscillator
108The dynamics of Ca in the ER and cytosol by
transport through the IP3 receptor and by the
cell membrane, excluding the L-type Ca-channel
and K- or Cl ion channels has the following
components
- SERCA pump
- IP3-receptor
- leakage of Ca from the ER into the cytosol
- PMCA pump
- leakage of Ca from extracellular space into the
cytosol - SOC-channel
- Ca-buffer in the cytosol
109Components of the model
Glek
CaER
SERCA
Jlek
PLC
BCacyt
ATP
IP3
Cacyt
B
IP3 receptor
JCRAC
Jlk
ATP
ATP
PMCA
110Components of the model for the IP3-oscillator
- IP3-receptor
- Leakage from ER
- SERCA-pomp
111Components of the model in the cell membrane
- SOC channel
- Leakage into cytosol
- PMCA-pomp
112steady-state behavior
- Without IP3, the steady-state is easily found by
solving the two equations, with two unknown
variables Cacyt and CaER
This gives a single, stable solution for Cacyt
and CaER
Vergelijk y2x1 y5x-2 (oplossing x1 y3)
113Steady state behavior without IP3
- Upper left panel Cacyt (red trace) and BCa
(buffered complex, blue trace) - Upper right panel CaER
- lower left panel JSERCA (red trace), Jlek (blue
trace) and JIP3 (green trace) - lower left panel JPMCA (red trace), Jlk (blue
trace), and JSOC (green trace).
It may take a long time, but the system always
converges to a stable state, irrespective of
various parameters, as long as JCRAC is large
enough .
114Concentration IP35
- When the concentration of IP3 increases above
zero, the activation gate of the IP3 receptor
opens, giving rise to a constant inflow of Ca
through the IP3 receptor. - As a consequence, CaER decreases relative to the
situation for IP30 . - Note that near the end we have JPMCA JSOC Jlk
and JSERCAJlek JIP3 - Note that JIP3 does not oscillate the system
goes to a stable steady state with a steady state
value for activation f and inactivation w of the
IP3 receptor. - A similar result is found for IP3 8
115IP3 concentration 5
- Upper left panel Cacyt (red trace) and BCa
(buffered complex, blue trace) - Upper right panel CaER
- lower left panel JSERCA (red trace), Jlek (blue
trace) and JIP3 (green trace) - lower left panel JPMCA (red trace), Jlk (blue
trace), and JSOC (green trace).
116Concentration IP38
- Upper left panel Cacyt (red trace) and BCa
(buffered complex, blue trace) - Upper right panel CaER
- lower left panel JSERCA (red trace), Jlek (blue
trace) and JIP3 (green trace) - lower left panel JPMCA (red trace), Jlk (blue
trace), and JSOC (green trace).
117IP3 oscillations
- When IP3 concentration is increased to 10
we obtain oscillations of the IP3-receptor. A
more detailed analytical analysis is necessary to
understand why f and w reach steady state values
(like for IP3 is 0,5 or 8) or start oscillating. - Averaged over time we find that JPMCA JSOC Jlk
and JSERCAJlek JIP3 - Note that the mean CaER concentration decreases
to smaller values for higher IP3 concentrations. - Raising the IP3 concentration to higher values
increases the oscillation frequency.
118Concentration IP310
119Concentration IP312
120What happens at higher IP3 concentrations ?
- Increasing the IP3- concentration to higher
values increases the oscillation frequency. - Notice that the first peak of JIP3 is large, but
subsequent flux peak values are much smaller.
This can be understood from the following After
the first Ca-release from the ER, the SERCA pump
starts reloading the ER. Since the next
IP3-release comes earlier for higher IP3
concentrations, the Cacyt is higher at the
following peak. As a consequence CaER-Cacyt is
smaller giving rise to smaller IP3 outflow.
Moreover, the inactivation closes faster due to
the higher IP3 concentration (see equations on
sheet 4).
121Concentration IP320
122Components of the model for the IP3-oscillator
- IP3-receptor
- Leakage from ER
- SERCA-pomp
123Concentration IP350
124Dynamics of IP3 receptor
nucleus
125Coupling between excitable membrane and
intracellular calcium oscillations
126Coupling between excitable membrane and
intracellular calcium oscillations
127Stability analysis of IP3 receptor
nucleus
128Stability analysis for membrane and IP3-receptor
129Poincaré map
The map M Cn ?Cn with can be written in
diagonal form with eigenvalues or Floquet
multipliers with Stability requires
130Stability and hysteresis
131Stability and hysteresis
132Hysteresis as a function of SOC-conductance
133Summary
- Coupling of two relatively simple systems gives a
complex system with multi-stability and
hysteresis - Multi-stability provides several states
controlled by a few parameters. - Hysteresis ensures that a process is completed in
the presence of external changes.
134Wand ring
PGF2a
135nifedipine
Nifedipine blocks the L-type Ca-channel and
thereby eliminates propagation of electrical
activity and Ca-wave propagation
136(No Transcript)
137(No Transcript)
138(No Transcript)
139(No Transcript)
140(No Transcript)
141(No Transcript)
142Components of the model for the NRK Membrane
- Lek door het membraan
- Kalium kanaal
- PMCA-pomp
143Hysteresis diagram for cell membrane
Caer
GCl(Ca)
GCaL
Caex
144Chemical potential
Chemical potential In equilibrium