SpaceTime Trellis Code STTC - PowerPoint PPT Presentation

1 / 35
About This Presentation
Title:

SpaceTime Trellis Code STTC

Description:

k-digit of information, n-digit ( ) of codeword, redundant check digits. ... Each n-bit codeword block depends on the current information digits and on past ... – PowerPoint PPT presentation

Number of Views:1268
Avg rating:5.0/5.0
Slides: 36
Provided by: Bam84
Category:

less

Transcript and Presenter's Notes

Title: SpaceTime Trellis Code STTC


1
Space-Time Trellis Code (STTC)
  • Bahador Amiri
  • Winter 2006

2
Contents
  • Coding
  • Block codes versus Convolutional codes
  • Convolutional coding and trellis diagram
  • Trellis (MLSD) decoding
  • Viterbi decoding
  • Space-Time Trellis Codes (STTC)
  • Introduction
  • Encoding structure
  • Design of STTC
  • Rank Determinant criteria
  • Trace Criterion
  • Performance evaluation
  • Rank Determinant criteria
  • Trace Criterion

3
Part I Coding
4
Block codes versus convolutional codes
  • Block codes
  • k-digit of information, n-digit ( ) of
    codeword, redundant check digits.
  • No memory between blocks, the encoding of each
    data block is independent of past and future
    blocks.
  • Convolutional codes
  • Each n-bit codeword block depends on the current
    information digits and on past m information
    blocks.
  • The parameter m is called the memory order.
  • is the number of bits that the
    decoder must consider.

5
Road Map
  • Coding
  • Block codes versus Convolutional codes
  • Convolution coding and trellis diagram
  • Trellis (MLSD) decoding
  • Viterbi decoding
  • Space-Time Trellis Codes (STTC)
  • Introduction
  • Encoding structure
  • Design of STTC
  • Rank Determinant criteria
  • Trace Criterion
  • Performance evaluation
  • Rank Determinant criteria
  • Trace Criterion

6
Convolutional Coding and Trellis diagram (I)
  • current ---------------gt NEXT
  • State State
  • BA C CBA(XY) next BA
  • -----------------------------------
  • 00 0 000 (00) gt 00
  • 00 1 100 (11) gt 10
  • 01 0 001 (11) gt 00
  • 01 1 101 (00) gt 10
  • 10 0 010 (10) gt 01
  • 10 1 110 (01) gt 11
  • 11 0 011 (01) gt 01
  • 11 1 111 (10) gt 11
  • C B A X Y
  • --------------
  • 0 0 0 0 0
  • 0 0 1 1 1
  • 0 1 0 1 0
  • 0 1 1 0 1
  • 1 0 0 1 1
  • 1 0 1 0 0
  • 1 1 0 0 1
  • 1 1 1 1 0

7
Convolutional Coding and Trellis diagram (II)
  • Message to be transmitted
  • 1 0 0 1 1 1 0 1 1
  • Encoded message
  • 11 10 11 11 01 10 01 00 01 11
  • BA C CBA (XY) next BA 00 1 100
    (11) 10 10 0 010 (10) 01
    01 0 001 (11) 00 00 1 100
    (11) 10 10 1 110 (01) 11
    11 1 111 (10) 11 11 0 011
    (01) 01 01 1 101 (00) 10
    10 1 110 (01) 11 ----- end flush
    with zeros ----- 11 0 011 (01) 01
    01 0 001 (11) 00

8
Convolutional Coding and Trellis diagram (III)
  • Trellis Diagram
  • For each incoming bit there are only two
    possible branches to a new state


9
Convolutional Coding and Trellis diagram (IV)


10
Road Map
  • Coding
  • Block codes versus Convolutional codes
  • Convolution coding and trellis diagram
  • Trellis (MLSD) decoding
  • Viterbi decoding
  • Space-Time Trellis Codes (STTC)
  • Introduction
  • Encoding structure
  • Design of STTC
  • Rank Determinant criteria
  • Trace Criterion
  • Performance evaluation
  • Rank Determinant criteria
  • Trace Criterion

11
Trellis (MLSD) decoding (I)
  • By continuing same example
  • First, I will suppose that with do not have any
    noise, then the exact transmitted message will
    receive at the receiver (no error). I will show
    that recovery of our information bits from the
    codeword by Trellis diagram is easy.
  • Next, I will show how can we correct one or more
    errors with Trellis decoding which is based on
    Maximum Likelihood Sequence Detection (MLSD).
  • Received encoded message 11 10 11 11 01 10 01 00
    01 01 11
  • BA C CBA(XY) next BA
  • 00 0 000(00) gt 00
  • 00 1 100(11) gt 10
  • 01 0 001(11) gt 00
  • 01 1 101(00) gt 10
  • 10 0 010(10) gt 01
  • 10 1 110(01) gt 11
  • 11 0 011(01) gt 01
  • 11 1 111(10) gt 11

12
Trellis (MLSD) decoding (II)
  • Finding the best path
  • 1 0 0 1 1 1 0 1
    1 0 0
  • Decoded Data Bits (continuous path)


13
Trellis (MLSD) decoding (III)
  • Error Correction Example
  • If the received signal had some error, then the
    Trellis diagram will not be continuous and we
    need to use the maximum likelihood theory the
    find the encoded transmitted signal and
    consequently the information bits.
  • Received message 11 10 10 11 01 10 01 00
    01 01 11
  • Transmitted message 11 10 11 11 01 10 01 00
    01 01 11
  • 1 0 ? 1
    1 1 0 1 1 0 0
  • Error Data Sequence (not a continuous path)

14
Trellis (MLSD) decoding (IV)
  • 1 0 0 1 1 1 0 1
    1 0 0
  • Corrected Data Bits (Continuous path)

15
Trellis (MLSD) decoding (V)
Received data 11 10 10 11 01 10 01 00 01 01
11 Repaired data 11 10 11 11 01 10 01 00 01
01 11
Difference 00 00 01 00 00 00 00 00 00
00 00
  • Maximum Likelihood

Received data 11 10 10 11 01 10 01 00 01 01
11 Repaired data 11 01 01 00 01 10 01 00 01
01 11
Difference 00 11 11 11 00 00 00 00 00
00 00
16
Road Map
  • Coding
  • Block codes versus Convolutional codes
  • Convolution coding and trellis diagram
  • Trellis (MLSD) decoding
  • Viterbi decoding
  • Space-Time Trellis Codes (STTC)
  • Introduction
  • Encoding structure
  • Design of STTC
  • Rank Determinant criteria
  • Trace Criterion
  • Performance evaluation
  • Rank Determinant criteria
  • Trace Criterion

17
Viterbi Decoding (I)
  • Long message or more error numbers
    more complexity

Received data 11 01 11 11 00 01 01 11
18
Viterbi Decoding (II)
19
Part II Space-Time Trellis Codes (STTC)
20
Road Map
  • Coding
  • Block codes versus Convolutional codes
  • Convolution coding and trellis diagram
  • Trellis (MLSD) decoding
  • Viterbi decoding
  • Space-Time Trellis Codes (STTC)
  • Introduction
  • Encoding structure
  • Design of STTC
  • Rank Determinant criteria
  • Trace Criterion
  • Performance evaluation
  • Rank Determinant criteria
  • Trace Criterion

21
Introduction
  • Space-Time Block Codes achieve
    maximum possible diversity
    advantage but no coding gain and
    bandwidth expansion
  • advantage simplicity
  • Space-Time Trellis Codes (STTC) joint
    design of error control coding,
    Modulation, transmit

  • and receive diversity
  • complexity
    coding gain, spectral efficiency,

  • and diversity improvement

22
Road Map
  • Coding
  • Block codes versus Convolutional codes
  • Convolution coding and trellis diagram
  • Trellis (MLSD) decoding
  • Viterbi decoding
  • Space-Time Trellis Codes (STTC)
  • Introduction
  • Encoding structure
  • Design of STTC
  • Rank Determinant criteria
  • Trace Criterion
  • Performance evaluation
  • Rank Determinant criteria
  • Trace Criterion

23
Encoding structure (I)
  • M-PSK modulation with transmit antennas
    input


  • where

  • adder is
    modulo M

  • m
    feed-forward shift register


24
Encoding structure (II)
  • is the output of encoder at time t for i-th
    antenna
  • is total memory order of encoder
  • is memory order of k-th branch of encoder
  • Is the total number of states for the trellis
    encoder
  • are generator sequences, and
    they can describe the encoder.

mod M, i 1,2,,nT
25
Road Map
  • Coding
  • Block codes versus Convolutional codes
  • Convolution coding and trellis diagram
  • Trellis (MLSD) decoding
  • Viterbi decoding
  • Space-Time Trellis Codes (STTC)
  • Introduction
  • Encoding structure
  • Design of STTC
  • Rank Determinant criteria
  • Trace Criterion
  • Performance evaluation
  • Rank Determinant criteria
  • Trace Criterion

26
Design of STTC (I)
  • Goal design optimum space-time trellis code for
    given number of transmit antenna and memory order
  • best set of encoder coefficients to minimize the
    error probability

Codeword difference matrix
  • rank of B
  • Code design depends on r and number of received
    antennas
  • rank determinant criteria
  • trace criterion

27
Design of STTC (II)
  • Table Find r choose
    criteria


28
Rank Determinant criteria
(minimum diversity)
Rank Determinant criteria
  • Maximize the minimum rank r of matrix
    over all pairs of distinct codewords
  • Maximize the minimum product, , of
    matrix along the pairs of distinct
    codewords with the minimum rank

By V. Tarokh, N. Seshadri and R. Calderbank (TSC)
1998
29
Trace Criterion
(minimum diversity)
Trace Criterion
  • Make sure that the minimum rank r of matrix
    over all pairs of distinct codewords in such
    that
  • Maximize the minimum trace of matrix
    among all pairs of distinct codewords

By B. Vucetic, J. Yuan and Z. Chen 2001
30
Comparison of TSC and Trace (TR) criteria
Comparison of TSC and Trace criteria for 4-PSK
STTC modulation 2 transmit antennas
31
Road Map
  • Coding
  • Block codes versus Convolutional codes
  • Convolution coding and trellis diagram
  • Trellis (MLSD) decoding
  • Viterbi decoding
  • Space-Time Trellis Codes (STTC)
  • Introduction
  • Encoding structure
  • Design of STTC
  • Rank Determinant criteria
  • Trace Criterion
  • Performance evaluation
  • Rank Determinant criteria
  • Trace Criterion

32
Performance evaluation (I)
  • 130 symbols frame
  • Increasing the receiver antennas results the
    coding advantage by increasing the number of
    states
  • is the number of states
  • 4-PSK with rate 2 b/s/Hz, one receive and two
    transmit antennas

33
Performance evaluation (II)
  • 4-PSK with rate 2 b/s/Hz, two receive and two
    transmit antennas

34
Performance evaluation (III)
  • Comparing TSC Trace criteria
  • Slow fading channels is supposed
  • Performance comparison of the 8-state 8-PSK STTCM

35
Questions?
Write a Comment
User Comments (0)
About PowerShow.com