Title: SpaceTime Trellis Code STTC
1Space-Time Trellis Code (STTC)
- Bahador Amiri
- Winter 2006
2Contents
- Coding
- Block codes versus Convolutional codes
- Convolutional coding and trellis diagram
- Trellis (MLSD) decoding
- Viterbi decoding
- Space-Time Trellis Codes (STTC)
- Introduction
- Encoding structure
- Design of STTC
- Rank Determinant criteria
- Trace Criterion
- Performance evaluation
- Rank Determinant criteria
- Trace Criterion
3Part I Coding
4Block codes versus convolutional codes
- Block codes
- k-digit of information, n-digit ( ) of
codeword, redundant check digits. - No memory between blocks, the encoding of each
data block is independent of past and future
blocks. - Convolutional codes
- Each n-bit codeword block depends on the current
information digits and on past m information
blocks. - The parameter m is called the memory order.
- is the number of bits that the
decoder must consider.
5Road Map
- Coding
- Block codes versus Convolutional codes
- Convolution coding and trellis diagram
- Trellis (MLSD) decoding
- Viterbi decoding
- Space-Time Trellis Codes (STTC)
- Introduction
- Encoding structure
- Design of STTC
- Rank Determinant criteria
- Trace Criterion
- Performance evaluation
- Rank Determinant criteria
- Trace Criterion
6Convolutional Coding and Trellis diagram (I)
- current ---------------gt NEXT
- State State
- BA C CBA(XY) next BA
- -----------------------------------
- 00 0 000 (00) gt 00
- 00 1 100 (11) gt 10
- 01 0 001 (11) gt 00
- 01 1 101 (00) gt 10
- 10 0 010 (10) gt 01
- 10 1 110 (01) gt 11
- 11 0 011 (01) gt 01
- 11 1 111 (10) gt 11
- C B A X Y
- --------------
- 0 0 0 0 0
- 0 0 1 1 1
- 0 1 0 1 0
- 0 1 1 0 1
- 1 0 0 1 1
- 1 0 1 0 0
- 1 1 0 0 1
- 1 1 1 1 0
7Convolutional Coding and Trellis diagram (II)
- Message to be transmitted
- 1 0 0 1 1 1 0 1 1
- Encoded message
- 11 10 11 11 01 10 01 00 01 11
- BA C CBA (XY) next BA 00 1 100
(11) 10 10 0 010 (10) 01
01 0 001 (11) 00 00 1 100
(11) 10 10 1 110 (01) 11
11 1 111 (10) 11 11 0 011
(01) 01 01 1 101 (00) 10
10 1 110 (01) 11 ----- end flush
with zeros ----- 11 0 011 (01) 01
01 0 001 (11) 00
8Convolutional Coding and Trellis diagram (III)
- Trellis Diagram
- For each incoming bit there are only two
possible branches to a new state
9Convolutional Coding and Trellis diagram (IV)
10Road Map
- Coding
- Block codes versus Convolutional codes
- Convolution coding and trellis diagram
- Trellis (MLSD) decoding
- Viterbi decoding
- Space-Time Trellis Codes (STTC)
- Introduction
- Encoding structure
- Design of STTC
- Rank Determinant criteria
- Trace Criterion
- Performance evaluation
- Rank Determinant criteria
- Trace Criterion
11Trellis (MLSD) decoding (I)
- By continuing same example
- First, I will suppose that with do not have any
noise, then the exact transmitted message will
receive at the receiver (no error). I will show
that recovery of our information bits from the
codeword by Trellis diagram is easy. - Next, I will show how can we correct one or more
errors with Trellis decoding which is based on
Maximum Likelihood Sequence Detection (MLSD).
- Received encoded message 11 10 11 11 01 10 01 00
01 01 11 - BA C CBA(XY) next BA
- 00 0 000(00) gt 00
- 00 1 100(11) gt 10
- 01 0 001(11) gt 00
- 01 1 101(00) gt 10
- 10 0 010(10) gt 01
- 10 1 110(01) gt 11
- 11 0 011(01) gt 01
- 11 1 111(10) gt 11
12Trellis (MLSD) decoding (II)
- 1 0 0 1 1 1 0 1
1 0 0 - Decoded Data Bits (continuous path)
13Trellis (MLSD) decoding (III)
- Error Correction Example
- If the received signal had some error, then the
Trellis diagram will not be continuous and we
need to use the maximum likelihood theory the
find the encoded transmitted signal and
consequently the information bits. - Received message 11 10 10 11 01 10 01 00
01 01 11 - Transmitted message 11 10 11 11 01 10 01 00
01 01 11
- 1 0 ? 1
1 1 0 1 1 0 0 - Error Data Sequence (not a continuous path)
14Trellis (MLSD) decoding (IV)
- 1 0 0 1 1 1 0 1
1 0 0 - Corrected Data Bits (Continuous path)
15Trellis (MLSD) decoding (V)
Received data 11 10 10 11 01 10 01 00 01 01
11 Repaired data 11 10 11 11 01 10 01 00 01
01 11
Difference 00 00 01 00 00 00 00 00 00
00 00
Received data 11 10 10 11 01 10 01 00 01 01
11 Repaired data 11 01 01 00 01 10 01 00 01
01 11
Difference 00 11 11 11 00 00 00 00 00
00 00
16Road Map
- Coding
- Block codes versus Convolutional codes
- Convolution coding and trellis diagram
- Trellis (MLSD) decoding
- Viterbi decoding
- Space-Time Trellis Codes (STTC)
- Introduction
- Encoding structure
- Design of STTC
- Rank Determinant criteria
- Trace Criterion
- Performance evaluation
- Rank Determinant criteria
- Trace Criterion
17Viterbi Decoding (I)
- Long message or more error numbers
more complexity
Received data 11 01 11 11 00 01 01 11
18Viterbi Decoding (II)
19Part II Space-Time Trellis Codes (STTC)
20Road Map
- Coding
- Block codes versus Convolutional codes
- Convolution coding and trellis diagram
- Trellis (MLSD) decoding
- Viterbi decoding
- Space-Time Trellis Codes (STTC)
- Introduction
- Encoding structure
- Design of STTC
- Rank Determinant criteria
- Trace Criterion
- Performance evaluation
- Rank Determinant criteria
- Trace Criterion
21Introduction
- Space-Time Block Codes achieve
maximum possible diversity
advantage but no coding gain and
bandwidth expansion - advantage simplicity
- Space-Time Trellis Codes (STTC) joint
design of error control coding,
Modulation, transmit -
and receive diversity - complexity
coding gain, spectral efficiency, -
and diversity improvement
22Road Map
- Coding
- Block codes versus Convolutional codes
- Convolution coding and trellis diagram
- Trellis (MLSD) decoding
- Viterbi decoding
- Space-Time Trellis Codes (STTC)
- Introduction
- Encoding structure
- Design of STTC
- Rank Determinant criteria
- Trace Criterion
- Performance evaluation
- Rank Determinant criteria
- Trace Criterion
23Encoding structure (I)
- M-PSK modulation with transmit antennas
input -
-
where -
adder is
modulo M -
m
feed-forward shift register -
24Encoding structure (II)
- is the output of encoder at time t for i-th
antenna - is total memory order of encoder
- is memory order of k-th branch of encoder
- Is the total number of states for the trellis
encoder -
- are generator sequences, and
they can describe the encoder.
mod M, i 1,2,,nT
25Road Map
- Coding
- Block codes versus Convolutional codes
- Convolution coding and trellis diagram
- Trellis (MLSD) decoding
- Viterbi decoding
- Space-Time Trellis Codes (STTC)
- Introduction
- Encoding structure
- Design of STTC
- Rank Determinant criteria
- Trace Criterion
- Performance evaluation
- Rank Determinant criteria
- Trace Criterion
26Design of STTC (I)
- Goal design optimum space-time trellis code for
given number of transmit antenna and memory order
- best set of encoder coefficients to minimize the
error probability
Codeword difference matrix
- Code design depends on r and number of received
antennas
- rank determinant criteria
- trace criterion
27Design of STTC (II)
- Table Find r choose
criteria
28Rank Determinant criteria
(minimum diversity)
Rank Determinant criteria
- Maximize the minimum rank r of matrix
over all pairs of distinct codewords - Maximize the minimum product, , of
matrix along the pairs of distinct
codewords with the minimum rank
By V. Tarokh, N. Seshadri and R. Calderbank (TSC)
1998
29Trace Criterion
(minimum diversity)
Trace Criterion
- Make sure that the minimum rank r of matrix
over all pairs of distinct codewords in such
that - Maximize the minimum trace of matrix
among all pairs of distinct codewords
By B. Vucetic, J. Yuan and Z. Chen 2001
30Comparison of TSC and Trace (TR) criteria
Comparison of TSC and Trace criteria for 4-PSK
STTC modulation 2 transmit antennas
31Road Map
- Coding
- Block codes versus Convolutional codes
- Convolution coding and trellis diagram
- Trellis (MLSD) decoding
- Viterbi decoding
- Space-Time Trellis Codes (STTC)
- Introduction
- Encoding structure
- Design of STTC
- Rank Determinant criteria
- Trace Criterion
- Performance evaluation
- Rank Determinant criteria
- Trace Criterion
32Performance evaluation (I)
- 130 symbols frame
- Increasing the receiver antennas results the
coding advantage by increasing the number of
states - is the number of states
- 4-PSK with rate 2 b/s/Hz, one receive and two
transmit antennas
33Performance evaluation (II)
- 4-PSK with rate 2 b/s/Hz, two receive and two
transmit antennas
34Performance evaluation (III)
- Comparing TSC Trace criteria
- Slow fading channels is supposed
- Performance comparison of the 8-state 8-PSK STTCM
35Questions?