Title: Neural Network Analysis
1Neural Network Analysis
www.msm.cam.ac.uk/phase-trans
CSIRO
2Charpy
fatigue
tensile
critical stress intensity
corrosion
3Axioms
- All properties can be measured.
- Measurements can be used in safe design.
- Measurements can be used in control.
4Dogma
- Given a comprehensive description of material,
process and structure, it is not yet possible to
predict most properties.
5hardness
6Variables
- C, Mn, Si, Ni, Cr, Mo, V, Co, B, N, O..
- Thermomechanical processing of steel
- Welding consumable
- Welding parameters
- Subsequent heat treatment
7Conclusions
- There are useful ways of expressing hardness
- Limited models relating hardness to
microstructure - No method for predicting hardness in general
8Solution
- non-linear functions
- large numbers of variables
- uncertainties
- exploit large knowledge base
9Empirical Equations
?y a b (C) c (Mn) d (Ni)
....
1223
10?y a b (C) c (Mn) ?y a b (C) c
(Mn) d(C x Mn)
11?y a b (C) c (Mn) ?y a b (C) c
(Mn) d(C x Mn) ?y sin (C)
tanh (Mn)
12(No Transcript)
13Hyperbolic Tangents
14(No Transcript)
15(No Transcript)
16non-linear functions
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21y
A
B
x
22Brun, Robson, Narayan, MacKay Bhadeshia, 1998
23Components of Creep Strength, 2.25Cr1Mo
iron microstructure
550 C
solid solution
600 C
precipitates
Murugananth Bhadeshia, 2001
24Cole Bhadeshia, 1999
25GTA weld at 823 K (data from Nippon Steel)
600
500
400
300
200
100
0
20000
30000
40000
Life / hours
Cole Bhadeshia, 1999
26Cole Bhadeshia, 1999
27(No Transcript)
28Cool, 1996
29Cool, 1996
30600 C
As-welded
700 C
650 C
Cool, 1996
31Siemens Mitsui Babcock Nippon Steel ABB
32Nickel base alloy FT750dc
wt
33(No Transcript)
34Tancret Bhadeshia, 2002
1000
800
600
Yield stress / MPa
400
200
0
0
200
400
600
800
1000
1200
Temperature / C
35(No Transcript)
36(No Transcript)
37(No Transcript)