Outdoors Power Supply - PowerPoint PPT Presentation

1 / 37
About This Presentation
Title:

Outdoors Power Supply

Description:

Outdoors Power Supply. Team 2. ECE 445 Senior Design. Saad Baig. Arturo Guillen. 1. Table of Contents ... Under-voltage lockout at 1.65 V. Hiccup over-current ... – PowerPoint PPT presentation

Number of Views:43
Avg rating:3.0/5.0
Slides: 38
Provided by: Saa590
Category:

less

Transcript and Presenter's Notes

Title: Outdoors Power Supply


1
Outdoors Power Supply
  • Team 2
  • ECE 445 Senior Design
  • Saad Baig
  • Arturo Guillen

2
Table of Contents
  • Introduction
  • Features
  • Design Overview
  • Testing
  • Successes and Challenges
  • Recommendations
  • Potential Improvements
  • Acknowledgments
  • Questions

3
Introduction
  • The outdoor power supply
  • Purpose
  • Implementation
  • Two stages
  • Power generation
  • DC-DC conversion

4
Features
  • Multiple outputs (12 V, 5V, Universal)
  • Portable
  • Runs on conventional fuel
  • Ease of use

5
Design Overview
  • Basic block diagram

6
Thermoelectric Generation
  • What is a TEG?
  • No moving parts
  • Completely silent
  • Highly reliable

7
Initial TEG Housing Structure
  • Design parameters
  • 200 psi Compressive Loading
  • Uniform Load
  • Insulation

8
Final Structure
  • Fan
  • Water pot heatsink
  • Compression at the edges
  • Insulation at the base

9
Initial Converter Design
  • Comparison of different topologies
  • Flyback and Boost have high efficiencies

10
IV Characteristic of HZ 14
11
Flyback Advantages
  • Flyback Topology
  • Dielectric isolation
  • Minimal parts required
  • Easily derive multiple outputs

12
Flyback Design Issues
  • Low input voltage from TEG
  • Very high peak currents on the primary
  • Challenging inductor design
  • Availability of materials

13
Final Converter Design
  • Boost topology
  • Main components
  • Inductor
  • MOSFET
  • Diode
  • Output Capacitor

14
Two-Stage Boost
15
Boost Schematic (PCB Design)
16
Controller
  • TPS 43000
  • Under-voltage lockout at 1.65 V
  • Hiccup over-current protection
  • Imax(hu) .25 / RDS(ON) 11.36 A
  • Low power mode

17
Inductor Calculations
  • Minimum inductance needed to avoid operating in
    DCM
  • 5 V
  • Lcrit 1.908 uH
  • 12 V
  • Lcrit 11.27 uH

Lcrit (Rmin / 2) Tsw (1-D)2D
18
Output Filter
  • Moderate voltage ripple at the output
  • 5 V
  • C0 min 3.6 uF
  • 12 V
  • C0 min 16.8 uF

Cout min I0 max Dmax / ( fin vripple )
19
Feedback Network
  • Vr Rbias/(RbiasR1) Vout
  • Vout 1/(1-D) Vin

20
Testing TEG
  • Approximate module ? T
  • Verify power output
  • Verify module integrity
  • Calculate temperature differences across
    interfaces

21
Approximate Module ?T
  • Measured temperatures
  • Th 2740 C
  • Tc 1250 C
  • Measured open circuit voltage
  • Voc 1.93 V

?T 1100 C
22
Verify Power Output
P0 4.9 Watts
23
Verifying Module Integrity
  • Voltage across .3? load
  • VR 1.427 V
  • Module current
  • I VR / RL 4.76 A
  • Internal resistance
  • Ri ( VL-Voc )/ I .126 ?

24
Calculating ?Ti
  • Interface temperature drop
  • ?Ti (Th - Tc) ?T 390 C
  • Values in the range of 300 C to 500 C are
    acceptable

25
Testing Boost Converter
  • Vds, Vgs, output voltages and ripple voltages
  • Efficiencies at different loads
  • Testing in conjunction with the TEG
  • Line and load regulation

26
Converter Waveforms
5 V
12 V
Drain Voltage
Gate Voltage
27
5 V Converter Efficiency
?? 1 Ploss/Pin
28
12 V Converter Efficiency
29
5 V TEG/Supply Testing
30
12V TEG/Supply Testing
31
Line And Load Regulation
  • 5 V
  • Load reg 2.2 (.11 V)
  • Line reg 1.2 (.06 V)
  • 12 V
  • Load reg 5.0 (.6 V)
  • Line reg 2.2 (.264 V)

Line regulation Vout (highest input) Vout
(lowest input)/ Vout nominal
Load regulation Vout (no load) Vout (max
load)/ Vout nominal
32
Successes
  • Both converters worked
  • Good efficiencies on the converter
  • TEG was able to provide sufficient power

33
Challenges
  • Lead time on parts
  • Low input voltage controllers uncommon
  • Time constraints
  • Magnetics design can be complex

34
Recommendation
  • Importance of documentation
  • Maintain a well organized lab journal
  • Record ideas, implementation, test data, etc
  • Explore multiple sources
  • Verify design equations against different sources
  • Utilize design tools provided by manufacturer

35
Potential Improvements
  • Circuitry for low-power temperature controlled
    heat sink fan
  • Better TEG structure
  • Compression/Thermal expansion
  • Uniform Load
  • Smaller and lighter design
  • Safety

36
Acknowledgments
  • Professor Paul S. Carney
  • Professor Patrick L. Chapman
  • Professor Philip T. Krein
  • Paul Rancuret
  • ECE machine shop
  • Scott McDonald
  • David Switzer
  • Greg Bennett
  • ECE parts shop
  • Mark Smart
  • Power Lab
  • Andy Friedl
  • Kevin Colravy
  • Ben Niemoeller

37
Q A
QUESTIONS ?
Write a Comment
User Comments (0)
About PowerShow.com