Title: Tighter Cut-Based Bounds for k-pairs Communication Problems
1Tighter Cut-BasedBounds for k-pairs
Communication Problems
- Nick Harvey
- Robert Kleinberg
2Overview
- Definitions
- Sparsity and Meagerness Bounds
- Show these bounds very loose
- Define Informational Meagerness
- Based on Informational Dominance
- Show that it can be slightly loose
3k-pairs Communication Problem
S(1)
S(2)
T(2)
T(1)
4Concurrent Rate
- Source i desires communication rate di.
- Rate r is achievable if rate vector rd1, rd2,
, rdk is achievable - Rate region interval of R
- Def Network coding rate (or NCR) sup r
r is achievable
5k-pairs Communication Problem
S(1)
S(2)
- d1 d2 1ce 1 ?e?E
- Rate 1 achievable
T(2)
T(1)
6Upper bounds on rate
- Classical Sparsity bound for multicommodity
flows - CT91 General bound for multi-commodity
information networks - B02 Application of CT91 to directed network
coding instances equivalent to sparsity. - KS03 Bound for undirected networks with
arbitrarytwo-way channels - HKL04 Meagerness
- SYC03, HKL05 LP bound
- KS05 Bound based on iterative d-separation
7Vertex-Sparsity
- Def For U ? V,
- VS (G) minU?V VS (U)
- Claim NCR ? VS (G)
Capacity of edges crossing between U and
U Demand of commodities separated by U
VS (U)
8Edge-Sparsity
- Def For A ? E,
- ES (G) minA?E ES (A)
- Claim Max-Flow ? ES (G)
- But Sometimes NCR gt ES (G)
Capacity of edges in A Demand of commodities
separated in G\A
ES (A)
9NCR gt Edge-Sparsity
S(1)
S(2)
e
T(2)
T(1)
- Cut e separates S(1) and S(2)
- ? ES (e) 1/2
- But rate 1 achievable!
10Meagerness
- Def For A ? E and P ? k,A isolates P if for
all i,j ? P,S(i) and T(j) disconnected in G\A. -
- M (G) minA?E M (A)
- Claim NCR ? M (G)
Capacity of edges in A Demand of commodities in P
M (A) minP isolated by A
11Meagerness Vtx-Sparsity are weak
S(3)
S(2)
S(n)
S(n-1)
f2
fn-1
f3
S(1)
f1
g2
g3
g1
gn-1
gn
Gn
hn-1
h1
h3
h2
T(1)
T(n-1)
T(n)
T(3)
T(2)
- Thm M (Gn) VS (Gn) ?(1),but NCR ? 1/n.
12A Proof Tool
- Def Let A,B ? E. B is downstream of Aif B
disconnected from sources in G\A.Notation A ?
B. - Claim If A ? B then H(A) ? H(A,B).
- Pf Because S ? A ? B form Markov chain.
13Lemma NCR ? 1/n
S(3)
S(2)
S(n)
S(n-1)
f2
fn-1
f3
S(1)
f1
g2
g3
g1
gn-1
gn
Gn
hn-1
h1
h3
h2
T(1)
T(n-1)
T(n)
T(3)
T(2)
14Lemma NCR ? 1/n
S(3)
S(2)
S(n)
S(n-1)
f2
fn-1
f3
S(1)
f1
g2
g3
g1
gn-1
gn
Gn
hn-1
h1
h3
h2
T(1)
T(n-1)
T(n)
T(3)
T(2)
- Proof
- gn ? gn,T(1),h1 ? S(1),f1,g1,h1
15Lemma NCR ? 1/n
S(3)
S(2)
S(n)
S(n-1)
f2
fn-1
f3
S(1)
f1
g2
g3
g1
gn-1
gn
Gn
hn-1
h1
h3
h2
T(1)
T(n-1)
T(n)
T(3)
T(2)
- Proof
- gn ? gn,T(1),h1 ? S(1),f1,g1,h1
- ? S(1),f1,T(2),h2
16Lemma NCR ? 1/n
S(3)
S(2)
S(n)
S(n-1)
f2
fn-1
f3
S(1)
f1
g2
g3
g1
gn-1
gn
Gn
hn-1
h1
h3
h2
T(1)
T(n-1)
T(n)
T(3)
T(2)
- Proof
- gn ? gn,T(1),h1 ? S(1),f1,g1,h1
- ? S(1),f1,T(2),h2 ? S(1),S(2),f2,g2,h2
-
17Lemma NCR ? 1/n
S(3)
S(2)
S(n)
S(n-1)
f2
fn-1
f3
S(1)
f1
g2
g3
g1
gn-1
gn
Gn
h3
hn-1
h1
h2
T(1)
T(n-1)
T(n)
T(3)
T(2)
- Proof
- gn ? gn,T(1),h1 ? S(1),f1,g1,h1
- ? S(1),f1,T(2),h2 ? S(1),S(2),f2,g2,h2
- ? S(1),S(2),f2,T(3),h3
18Lemma NCR ? 1/n
S(3)
S(2)
S(n)
S(n-1)
f2
fn-1
f3
S(1)
f1
g2
g3
g1
gn-1
gn
Gn
hn-1
h1
h3
h2
T(1)
T(n-1)
T(n)
T(3)
T(2)
- Proof
- gn ? ? S(1),S(2),,S(n)
- Thus 1 ? H(gn) ? H(S(1),,S(n)) nr
- So 1/n ? r
19Towards a stronger bound
- Our focus cut-based bounds
- Given A ? E, we want to infer thatH(A) ? H(A,P)
where P?S(1),,S(k) - Meagerness uses Markovicity(sources in P) ? A ?
(sinks in P) - Markovicity sometimes not enough
20Informational Dominance
- Def A dominates B if information in A determines
information in Bin every network coding
solution.Denoted A B. - Trivially implies H(A) ? H(A,B)
- How to determine if A dominates B?
- HKL05 give combinatorial characterization and
efficient algorithm to test if A dominates B.
21Informational Meagerness
- Def For A ? E and P ? S(1),,S(k),A
informationally isolates P ifA?P P. - iM (A) minP for P informationally isolated by
A - iM (G) minA ? E iM (A)
- Claim NCR ? iM (G).
22iMeagerness Example
s1
s2
t1
t2
- Obviously NCR 1.
- But no two edges disconnect t1 and t2 from both
sources!
23iMeagerness Example
s1
s2
Cut A
t1
t2
- After removing A, still a path from s2 to t1!
24Informational Dominance Example
Cut A
- Our characterization shows A t1,t2
- H(A) ? H(t1,t2) and iM (G) 1
25(No Transcript)
26A bad example Hn
- Thm iMeagerness gap of Hn is ?(log V)
27Tn Binary tree of depth n Source S(i) ?i?Tn
28Tn Binary tree of depth n Source S(i)
?i?Tn Sink T(i) ?i?Tn
29Nodes q(i) and r(i) for every leaf i of Tn
30Complete bip. graph between sources and qs
31(r(a),t(b)) if b ancestor of a in Tn
32(s(a),t(b)) if a and b cousins in Tn
33All edges have capacity ? except (q(i),r(i))
Capacity 2-n
34Demand of source at depth i is 2-i
Capacity 2-n
t(00)
t(01)
t(10)
t(11)
t(0)
t(1)
t(e)
35Properties of Hn
- Lemma iM (Hn) ?(1)
- Lemma NCR lt 1/n
- Corollary iMeagerness gap is n?(log V)
36Properties of Hn
- Lemma iM (Hn) ?(1)
- Lemma NCR lt 1/n
- Corollary iMeagerness gap is nO(log V)
We will prove this
37Proof Ingredients
- Entropy moneybags
- i.e., sets of RVs
- Entropy investments
- Buying sources and edges, putting into moneybag
- Loans may be necessary
- Profit
- Via Downstreamness or Info. Dominance
- Earn new sources or edges for moneybag
- Corporate mergers
- Via Submodularity
- New Investment Opportunities and Debt
Consolidation - Debt repayment
38Submodularity of Entropy
- Claim Let A and B be sets of RVs.Then H(A)H(B)
? H(A?B)H(A?B) - Pf Equivalent to I( X Y Z ) ? 0.
39Lemma NCR lt 1/n
- Proof
- Two entropy moneybags
- F(a) S(b) b not an ancestor of a
- E(a) F(a) ? (q(b),r(b)) b is descendant of
a
40Entropy Investment
s(e)
s(0)
s(1)
s(00)
s(01)
s(10)
s(11)
a
q(01)
q(10)
q(11)
q(00)
- Let a be a leaf of Tn
- Take a loan and buy E(a).
41Earning Profit
s(e)
s(0)
s(1)
s(00)
s(01)
s(10)
s(11)
a
q(01)
q(10)
q(11)
q(00)
- Claim E(a) ? T(a)
- Pf Cousin-edges not from ancestors.Vertex r(00)
blocked by E(a).
t(00)
42Earning Profit
s(e)
s(0)
s(1)
s(00)
s(01)
s(10)
s(11)
a
q(01)
q(10)
q(11)
q(00)
- Claim E(a) ? T(a)
- ResultE(a) gives free upgrade to
E(a)?S(a).Profit S(a).
t(00)
43s(e)
s(0)
s(1)
aL
s(00)
s(01)
s(10)
s(11)
E(aL)?S(aL)
q(10)
q(01)
q(11)
q(00)
aR
s(e)
s(0)
s(1)
s(00)
s(01)
s(10)
s(11)
E(aR)?S(aR)
q(01)
q(10)
q(11)
q(00)
44Applying submodularity
s(e)
s(0)
s(1)
s(00)
s(01)
s(10)
s(11)
(E(aL)?S(aL)) ? (E(aR)?S(aR))
q(10)
q(01)
q(11)
q(00)
s(e)
s(0)
s(1)
s(00)
s(01)
s(10)
s(11)
(E(aL)?S(aL)) ? (E(aR)?S(aR))
q(01)
q(10)
q(11)
q(00)
45New Investment
s(e)
a
s(0)
s(1)
s(00)
s(01)
s(10)
s(11)
(E(aL)?S(aL)) ? (E(aR)?S(aR))
q(10)
q(01)
q(11)
q(00)
- Union term has more edges
- ? Can use downstreamnessor informational
dominance again! - (E(aL)?S(aL)) ? (E(aR)?S(aR)) E(a)
46Debt Consolidation
- Intersection term has only sources
- ? Cannot earn new profit.
- Used for later debt repayment
- (E(aL)?S(aL)) ? (E(aR)?S(aR)) F(a)
s(e)
a
s(0)
s(1)
s(00)
s(01)
s(10)
s(11)
(E(aL)?S(aL)) ? (E(aR)?S(aR))
q(01)
q(10)
q(11)
q(00)
47What have we shown?
- Let aL,aR be sibling leaves a is their parent.
- H(E(aL)) H(E(aR)) ? H(E(a)) H(F(a))
- Iterate and sum over all nodes in tree
- where r is the root.
- Note E(v) F(v) ? (q(v),r(v)) when v is a leaf
48Debt Repayment
- Claim
- Pf Simple counting argument.
?
49Finishing up
? Rate lt 1/n