Logische Grundlagen des Software Engineerings - PowerPoint PPT Presentation

1 / 39
About This Presentation
Title:

Logische Grundlagen des Software Engineerings

Description:

Intuitionistic logic is therefore also called constructive logic ... Arend Heyting (1898-1980) Glivenko. Kolmogorov. Gentzen. G del. BHK-interpretation ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 40
Provided by: ls14csTu
Category:

less

Transcript and Presenter's Notes

Title: Logische Grundlagen des Software Engineerings


1
Logische Grundlagen des Software Engineerings
  • Prof. Dr. Jakob Rehof
  • Lehrstuhl 14, Software Engineering

2
Intuitionistic logic
  • Classical logic is about truth
  • Intuitionistic logic is about constructibility
  • Intuitionistic logic is therefore also called
    constructive logic
  • All statements are classically regarded as either
    true or false p v p holds (tertium non datur)
  • there is 7 sevens somewhere in the decimal
    representation of the number
  • there are irrational p and q such that pq is
    rational
  • Intuitionistic logic, in contrast, requires that
    we can construct the objects whose existence we
    assert and hence rejects the tertium non datur
    principle

3
Intuitionistic logic
  • L.E.J.Brouwer (1881-1966)
  • Arend Heyting (1898-1980)
  • Glivenko
  • Kolmogorov
  • Gentzen
  • Gödel
  • ...

4
BHK-interpretation(informal constructive
semantics)
5
BHK-interpretation(informal constructive
semantics)
6
BHK-interpretation(informal constructive
semantics)
  • Note This informal interpretation can be
    formalized in
  • recursion theory Kleenes notion of
    realizability
  • lambda calculus the Curry-Howard isomorphism

7
Natural deduction
8
Proof trees
9
Examples of classical tautologies
Not all of these are intuitionistic theorems!
10
Example
--- p ? -p
Write p as p?0. We are to prove (((p?0)?0)?0) ?
(p?0) ((p?0)?0)?0, p, p?0 - p?0
((p?0)?0)?0, p, p?0 - p ---------------------
--------------------------------------------------
-------------------------
((p?0)?0)?0, p, p?0 - 0
-----------------------------------------------
((p?0)?0)?0, p -
(p?0)?0 ((p?0)?0)?0, p - ((p?0)?0)?0
---------------------------------
--------------------------------------------------
--------------
((p?0)?0)?0, p - 0

------------------------------------

((p?0)?0)?0 - p?0
------------------------
---------------
- (((p?0)?0)?0) ? (p?0)
11
Algebraic semantics of classical logic
  • Boolean semantics
  • Set semantics
  • Boolean algebra

12
Boolean semantics of classical logic
13
Set semantics of classical logic
14
Set semantics of classical logic
15
Semantics of classical logic
16
Boolean algebra
17
Algebraic semantics of intuitionistic logic
  • Lindenbaum algebra
  • Heyting algebra
  • Topological semantics
  • Algebraic semantics
  • Kripke semantics

18
Lindenbaum algebra
19
Lindenbaum algebra
20
Lindenbaum algebra
21
Lindenbaum algebra
22
Lindenbaum algebra
23
The problem with complement
24
Heyting algebra
25
Heyting algebra
26
Topological semantics
27
Algebraic semantics of intuitionistic logic
28
Algebraic semantics
29
Algebraic semantics
30
Example!
31
Example!
32
Characterization
33
Characterization
Property 1. shows that propositional
intuitionistic logic is decidable (in doubly
exponential space). In fact, as we will see
later, it can be decided in polynomial space.
34
Kripke model
35
Kripke model
Implied rule for negation
36
Example
Kripke model
p
c1
c0
q
c2
  • In this Kripke model we have
  • c0 - - - (p v q)
  • c0 - (p?q)?q
  • not c0 - (p v q)

37
Kripke model
Soundness and completeness of Kripe semantics
Proof By turning every Heyting algebra into a
Kripke model, using prime filter construction.
38
Disjunction property
39
Implicational fragment
Note that this requires a proof (right-to-left
implication)!
Conservativity over the implicational fragment
Write a Comment
User Comments (0)
About PowerShow.com