Title: Equation of motion method for generating exact multiphonon states
1Equation of motion method for generating exact
multiphonon states
- N. Lo Iudice
- Università di Napoli Federico II
-
- Trento07
2From mean field to multiphonon approaches
- Anharmonic and multiphonon spectra Experimental
evidence - Necessity of going beyond mean field (or
harmonic) approaches (RPA) - Some successful phenomenological (IBM)
- and microscopic (QPM) multiphonon approaches
- A new (in principle exact) multiphonon method
3Collective modes anharmonic features
- Within mean field
- Decay into single-particle motion (Landau
damping) - Beyond mean field
- Coupling to more complex configurations
(doorway 2p-2h) (collisional damping) determining
the spreading width
From T. Auman, P.F. Bortignon, H. Hemling, Ann.
Rev. Nucl. Part. Sc. 48, 351 (1998))
4Multiphonon excitations Exp. evidence
(spherical nuclei)
- Low-energy
- M. Kneissl. H.H. Pitz, and A. Zilges, Prog. Part.
Nucl. Phys. 37, 439 (1996) M. Kneissl. N.
Pietralla, and A. Zilges, J.Phys. G, 32, R217
(2006) - Two- and three-phonon multiplets
-
- Q2 Q30gt, Q2Q2Q30gt
- Proton-neutron (F-spin) mixed-symmetry states
- (N. Pietralla et al. PRL 83, 1303 (1999))
-
- Q2(p) - Q2(n) (Q2(p) Q2(n)) N0gt,
5Multiphonon excitations Exp. evidence (spherical
nuclei)
- High-energy
- (N. Frascaria, NP A482, 245c(1988) T. Auman,
P.F. Bortignon, H. Hemling, Ann. Rev. Nucl. Part.
Sc. 48, 351 (1998)) - Double
- D D 0gt
- and
- triple
- D D D 0gt
- dipole giant resonances
6 Inadequacy of mean field approaches
- Standard mean field approach RPA
- RPA is an harmonic approximations
- H,O ? h? O
- where
-
- O Sph X(ph) ap ah Y(ph) ah ap
(closed shell nuclei) - O Sµ? X(µ?) aµ a ? Y(µ?) aµ a? (open
shell nuclei) - As such, it is not adequate for describing
anharmonic spectra
7 From mean field to multiphonon approaches
- For anharmonic effects, a multiphonon space is
needed - Ideal method Boson expansion
- bµ
Sph cph apah ? B B B B B
B .. - and Fermion-Boson mapping
-
- Equivalent mapping routes
- Operator Mapping (S. T. Belyaev and V. G.
Zelevinsky, Nuc. Phys. 39, 582 (1962)) -
OF ? OB - State mapping (T. Marumori et al. Prog. Theor.
Phys. 31, 1009 (1964)) - ngt bµ b? .b? 0gt ?
n) Bi Bj ..Bk 0) - HB
Sn n n) ltnHngt (n - Constraint ltnHngt
(nHBn)
8 From mean field to multiphonon approaches
- Alternative to Boson expansion
- Microscopic approaches
- Nuclear Field theory (Bohr, Mottelsson, Bes,
Broglia..) - P.F. Bortignon, R. A. Broglia, D.R. Bes, and R.
Liotta, Phys. Rep. 30, 305 (1977) - Especially suitable for
- i) Damping of vibrational modes
- ii) Spreading widths of giant resonances
- Quasiparticle-phonon model (QPM)
- (V.G. Soloviev, Theory of Atomic Nuclei
Quasiparticles and Phonons, Bristol, 1992) - especially suitable for multiphonon excitations
- Phenomenological approaches
- Geometric collective model (GCM) (Greiner)
- Interacting Boson Model (IBM) (Arima and
Iachello)
9 Two multiphonon approaches
- A microscopic one QPM
- (V. G. Soloviev, Theory of Atomic Nuclei
Quasiparticles and Phonons, Bristol, 1992 -
- H Hsp Vpair VPP VFF
-
- Q? Sij X(ij) ai aj Y(ij) aiaj
-
- HQPM Si? ?i? Q? Q? Hvq
-
- ?? (JM) Sici Q?(i)
- Sij cij Q (i) Q(j)
- Sijk cijk Q(i) Q(j) Q(k)
- A phenomenological oneIBM
- (Arima Iachello)
- AJ0,2 S cij (ai ?aj)J0,2
-
- AJ0,2 (s, d)
- IBM) (s)ns (d) nd 0)
-
-
- IBM successful in
- low-energy
- spectroscopy
10A successfull IBM and QPM study!
- p-? MS states
- First detected in 94Mo
- N. Pietralla et al. PRL 83, 1303 (1999)
- Since then, found in several nuclei
- Werner et al. PL B550 (02),
- C. Fransen et al. PRC 71 (06)
11p-? MS states in IBM and QPM
- Symmetric
- n, ?gts QSn 0 gt
- (Qp Qn)n 0 gt
- MS
- n, ?gtMS QAQS (n-1) 0 gt
- (Qp - Qn) (Qp Qn) (n-1) 0 gt
- Signature
- Preserving symmetry
- M(E2) ? QS n ? n-1
- Changing symmetry
- M(M1) ? Jn Jp n ? n
E2
n3
M1
E2
n2
E2
n2
n1
E2
M1
n2
MS
E2
Sym
120 in deformed nuclei the need for a microscopic
approach
- 0 states populated by (p,t) in large abundance
for the first time in 158Gd - (Lesher et al. PRC 65 (2002) )
- since then, in several deformed nuclei
- D.A. Meyer et al. PRC 76, 044309 (2006)
- D. Bucurescu et al. PRC 73, 064309 (2006)
- The (sdpf) IBM cannot account for all observed
0 and their properties - Zamfir et al. Phys. Rev. C 66 (2002)
- A microscopic approach is badly needed QPM
- N.L. A.Sushkov N. Yu. Shirikova, PRC 70 (04),
PRC, 72 (05) - ?n Si Ci (n) i, 0 gt Sij Cij (n)
(?i ? ?j)0 gt - QPM spectroscopic factors
-
- Sn(p,t) ?n (p,t) / ?0 (p,t) 2
-
- ?n (p,t) lt0n, N 2 P0 00,Ngt
13Success and limitations of the QPM
- Fully microscopic and valid
-
at low and high energy. - Suitable also for the
- double
GDR (Ponomarev, Voronov) - Limitations
- Valid for separable interactions
- Antisymmetrization enforced in the
-
quasi-boson approximation, - Gs not explicitly correlated
- (Quasi-Boson approx)
14Further attempts
- Multistep Shell model (MSM)
-
(R.J. Liotta and C.
Pomar, Nucl. Phys. A382, 1 (1982)) - They expand and linearize
-
-
- ltaH, O,O0gt
( O Sph X(ph) a p ah ) -
- Multiphonon model (MPM)
- (M. Grinberg, R. Piepenbring et al. Nucl. Phys.
A597, 355 (1996) - Along the same lines
- Both MSM and (especially) MPM look involved
-
15A new (exact) multiphonon approach
- Eigenvalue problem in a multiphonon space
-
- H ? ?
gt E? ? ? gt -
- ? ? gt ? H Sn ? Hn Hn ??n
ßgt -
( n 0,1.....N ) - Generation of the n ßgt (basis states)
- An obvious (prohibitive!!) choice
-
n ßgt ?1, ?2, ?i ,?ngt - where (TDA)
-
?i gt Sph c ph(?i ) ap
ah 0gt - A more workable choice
-
n ßgt S a ph Caph ap ah n-1 a gt - (suggested by TDA)
- n1
n1 ßgt ?i gt Sph c ph(?i ) ap ah
0gt - But
- Also with this choice we run into a series of
problems!!
16Problem Overcompletness
-
- n ßgt S a ph Caph
ap ah n-1 a gt - The multiphonon states ap ah n-1 a gt
- are not fully antysymmetrized !!!
-
-
-
- ap ah n-1 a gt
? -
-
p h
p h
- The multiphonon states are
- not linearly
independent - and form an
-
overcomplete set.
17Implications of the redundancy
- n ßgt S j Cj igt
- having put
- i gt ap
ah n-1 a gt (not linearly independent ) -
- ?
- Eigenvalue problem
- Sj ltiHjgt - Ei ltijgt Cj 0
of general form - But (problems again!!)
- i. A direct calculation of ltiHjgt and ltijgt is
prohibitive !! - ii. The eigenstates would contain spurious
admixtures!! - How to circumvent these problems?
18EOM Construction of the Equations
- Crucial ingredient
- lt n ß
H, ap ah n-1 agt - Preliminary step
- Derive
- lt n ß H, ap ah n-1 agt ( Eß(n)- Ea(n-1))
lt n ß ap ah n-1 a gt - (LHS)
(RHS) - It follows from
- request
- lt n ß H n a gt
E a(n) daß - property
- lt n ß apah n ? gt dn,n-1 lt n ß
apah n-1 ? gt
19Equations of Motion LHS
- Commutator expansion
- lt n ß H, ap ah n-1 a gt
- (ep- eh)
lt n ß ap ah n-1 a gt. linear - 1/2 Sijp Vhjpk lt n ß ap
ah ai aj n-1 a gt not linear - Linearization
- lt n ß H, ap ah n-1 a gt
- Sph? (ep- eh) d?ß 1/2 Sij Vhjpk lt
n-1 ? ai aj n-1 a gt - lt n
ß ap ah n-1 ? gt - Sph? Aa?(n)(phph) lt n ß ap ah
n-1 ? gt
Î S ? n-1 ? gtlt n-1 ?
20LHSRHS AX EX
-
- where
- Aa?(n) ( ij)
epeh dij (n-1) daß (n-1) - VPH?H VHP?P VPP?P
VHH?H aißj -
-
-
- n 1 (?P 0 ?H dhh)
- Tamm-Dancoff
-
- Thus
- n1 n1 ßgt
?i gt Sph c ph(?i ) ap ah 0gt
C X
?j? Aa?(n) ( ij) X? (ß) (j) (Eß(n) Ea (n-1)
) Xa(ß) (i)
?H lt n-1,?ahah n-1,agt ?P lt
n-1,?apap n-1,agt
Xa(ß) (i ) lt n ß ap ah n-1 agt
A(1) X (ß) (Eß (1) - E0(0) ) X (ß) A(1)
(ij) dijepeh V(phhp)
21General Eigenvalue Problem
- Reminder
-
-
X aß (ph) lt n ß ap ah n-1 a gt ? C aß
(ph) - Insert n ßgt Sa ph C aß
(ph) ap ah n-1 a gt -
-
-
Xaß(n)(ph) lt n ß ap ah n-1 a
gt -
- X DC
-
- where
?? Aa?(n) X?ß(n) (Eß(n) - Ea(n-1 ) )Xaß(n)
A X E X
(AD)C H C E DC
22General Eigenvalue Problem
- Solution of problem i)
-
- Aa ß(n) ( ij) epeh dij (n-1) daß (n-1)
- VPH?H VHP?P VPP?P VHH?Haißj
- Dij ltijgt lt n-1 a( ah ap)( ap ah)
n-1 ß gt -
-
(AD)C H C E DC
D ?H (n-1) ?P (n-1) ?H (n-1) ?P (n-1)
C (n-1) X (n-1) C (n-1) X (n-1) ?P (n-2)
recursive relations
Problem i) solved!!!!
23General Eigenvalue Problem
- Solution of Problem ii) (redundancy)
-
- Removal of redundancy Choleski
- D 0 ? D L LT
L ? -
-
- Determination of L ?lij follows from D
L LT ? -
- l211
d11 - ? Recursive formulas l11 lj1 dj1
-
l2ii dii Sk1,i-1
l2ik - lii
lji dji Sk1,i-1 lik ljk
(AD)C H C E DC
Det D 0
l11 0 0 0 0 0 l21 l22 0 0 0.. .0 l31
l32 l33 0 0.. .0 li1 ...lii 0....0 lN1
lN2 lNN-1 lNN
24General Eigenvalue Problem
- Solution of Problem ii) (redundancy)
-
-
- D 0 ? D L LT
L ? -
- Property
-
- DetD (DetL)2 l112 l222 ...lii2. ?21
?2i (D ?i gt ?i ?i gt ) -
- ?
? lnn 0 ? ?n gt linearly dependent
- Numerical stability
- Sequence order lii ljj ? j
gt i -
- Once lnn 0 ? lii 0
? i gtn ? stop at the nth step
l11 0 0 0 0 0 l21 l22 0 0 0.. .0 l31
l32 l33 0 0.. .0 li1 ...lii 0....0 lN1
lN2 lNN-1 lNN
(AD)C H C E DC
Det D 0
Det D 0
Det L 0
X
25General Eigenvalue Problem
- Solution of Problem ii) (redundancy)
- Choleski decomposition
-
- Matrix inversion
-
-
-
- Exact
eigenvectors -
- n ßgt S aph Caph ap
ah n-1 a gt ? H n (phys) -
(AD)C H C E DC
D D
HC (D-1AD)C E C
26Iterative generation of phonon basis
- Starting point 0gt
-
-
- Solve
H(1) C(1) E(1) C(1) -
n1, agt -
X(1) ?(1) - Solve
H(2) C (2) E (2) C
(2) -
n2,agt -
-
X(2) ?(2) -
-
-
X(n-1) ?(n-1) - Solve
H(n) C (n) E
(n) C (n) -
-
X(n) ?(n)
n,a.gt
27H Spectral decomposition, diagonalization
-
- H S na E a(n) n
agtltna (diagonal) - S na ß n
agtltna H nßgtltnß (off-diagonal) -
n
n 1, n2 - Off-diagonal terms Recursive formulas
- lt n ß H n-1 a gt
Sph? ?a? (n-1)(ph) X?(ß) (ph) - lt n ß H n-2 a
gt S Vpphh X?(ß) (ph) X?a(a) (ph) - Outcome of diagonalization H ??gt E? ??gt
-
-
-
??gt Sna Ca(?) (n) nagt
nagt S? C?(a) ap ah n-1?gt
2816O as theoretical lab
- Structure of 16O A theoretical challenge
- Pioneering work First excited 0 as deformed
4p-4h excitations - G. E. Brown, A. M. Green, Nucl. Phys. 75, 401
(1966) - (TDA) IBM (includes up to 4 TDA Bosons)
- H. Feshbach and F. Iachello, Phys. Lett. B 45, 7
(1973) Ann. Phys. 84, 211 (194) - SM up to 4p-4h and 4 h?
- W.C. Haxton and C. J. Johnson, PRL 65, 1325
(1990) - E.K. Warbutton, B.A. Brown, D.J. Millener, Phys.
Lett. B293,7(1992) - Self-consistent Green function (SCGF) (extends
RPA so as to include dressed s.p propagators and
coupling to two-phonons) - C. Barbieri and W.H. Dickhoff, PRC 68, 014311
(2003) - W.H. Dickhoff and C. Barbieri, Pro. Part. Nucl.
Phys. 25, 377 (2004) - No-core SM (NCSM) Huge space!!!
- Symplectic No-core SM (SpNCSM) a promising tool
for cutting the SM space
29Numerical test A 16
- Calculation up to 3-phonons and 3h?
- Hamiltonian
-
- H H0 V Si hNils(i) Gbare
( VBonnA ? Gbare) - CM motion (F. Palumbo Nucl. Phys. 99 (1967))
- H ?
H Hg - Hg g
P2/(2Am) (½) mA ?2 R2 -
- Consistent choice of ph space It must
includes all ph configurations up to 3h? -
- H ? H??(int) Fn(CM) (E? En(CM)) ??(int)
Fn(CM) -
- For ggtgt1 E(ngt0)(CM) E0(CM) gtgt (Ev E0(CM))
-
??(int) F(ngt0)(CM)
X
30Ground state
- ?0gt C(0)0 0gt
- S? C?(0) ?, 0gt
- S ?1?2 C?1?2 (0) ? 1 ? 2, 0 gt
-
- ?, 0gt ? 1 ? 2, 0 gt
- 1 lt ?0?0gt P0 P1 P2
3116O negative parity spectrum
32E.m. response
??gt Sn? C?(?) (n) n?1?2. ?n gt
-
- C3 ?1 ?2 ?3 gt
-
- C1 ?1 gt
- C2 ?1 ?2gt
-
- C0 0gt
- gs
- MPEM
- ?gt Sph c ph(?) ap ah0gt
-
-
- ?gt
- 0gt
- gs
-
- TDA
33IVGDR
34ISGDR
- 1-gtIS 1(p-h) (3 h?)gt 2(p-h) (1h? 2h?)gt
3(p-h) (1h? )gt -
-
- Toroidal
-
35Octupole modes
- 3-gtIS 1(p-h) (3 h?)gt 2(p-h) (1h? 2h?)gt
3(p-h) (1h? )gt -
-
- Low-lying
-
36Effect of CM motion
37Effect of the CM motion
38Concluding remarks
- The multiphonon eigenvalue equations
- - have a simple structure
- yield exact eigensolutions of a general H
- The 16O test shows that
- an exact calculation in the full multiphonon
space is feasible - at least up to 3 phonons and 3 h?.
- To go beyond
- Truncation of the
space needed !!! - Truncation is feasible (the phonon states are
correlated). - A riformulation for an efficient truncation is
in progress
39Perspectives New formulation
- ap ah n-1 a gt ? O? n-1 a gt
O?
Sph cph(? ) ap ah 0gt - lt n ß H, ap ah
n-1 agt ? lt n ß H, O? n-1 agt -
-
-
-
-
-
-
??? Aa?(n) (?,?) X(ß)? ? Eß(n) X (ß)? ?
X(ß)a? lt n ß O? n-1 a gt
??? (kl) lt ? akal ?gt
?a?(n-1) (kl) lt n-1,? akal n-1,agt
Aa?(n) (?,?) E? Ea(n-1) d? ? da?
??? V ?a?(n-1)
n ßgt Sa? C(ß)a? O? n-1 a gt
SC(ß) ?i
?1,.?i.?N gt C (ß) ?i S C(ß)a?1
C(a) ??2 C (?)d?3
40Vertices
?
--------
---------
p
?
h
p
h
?
a
Vphhp
??? V ?a?(n-1)
41Acknowledgments
- J. Kvasil, F. Knapp (Prague)
- F. Andreozzi, A. Porrino (Napoli)
-
42 43E2 response up to 3 h? Running sum
- Sn Sn (En E0(0) ) Bn(E2,0?2n)
- Rn Sn/SEW(E2)
- It is necessary to enlarge the space!!
44E2 response up to 3 h?
- S(?,E2) Sn Bn(E2,0?2n) ??(?-?n)
- ??(x) (?/2p) / x2 (?/2)2
- M(E2µ) S(p)ep rp2 Y 2µ
45Effect of CM on the E2 response
46Multiphonon excitations Exp. Evidence (deformed
nuclei)
- (Some of the) 0 states
- observed in large abundance in (p,t)
- S. R. Lesher et al. PR C 66, 051305(R)(2002).
- H.-F. Wirth et al. PRC 69, 044310 (2004).
- D. Bucurescu et al, PRC 73, 064309 (2006).
- D. A. Meyer et al., PRC 74, 044309 (2006).
- M1 mode built on excited states
- observed in two-step ?-cascade
- M. Krticka, F. Becvar et al. PRL 92 , 172501
(2004). -
47From TDA to RPA
-
- A(n) B(n)
X(n) - (E(n) -
E(n-1))
- B(n) A(n)
-Y(n)
48- Aa?(n) (phph)dhhdppda?(n-1)epeh
- Sh1 V(ph1hp) ?a?(n-1) (h1h)
-
- Sp1 V(php1h) ?a?(n-1) (pp1)
- dhh Sp2p3 V(pp2pp3)?a?(n-1) (p2p3)
-
- Sh2h3 V(ph2ph3)?a?(n-1)(h2h3)
- dpp Sh2h3 V(hh2hh3)?a?(n-1)(h2h3)
- Sp2p3 V(hp2hp3)?a?(n-1)(p2p3)
- Ba?(n) (phph)
- Sh2 V(p ph2 h)?a?(n-1)(h2h)
- Sp2 V(hhp2p)?a?(n-1)(pp2)
49AX EX
- where
- Aa?(n) (phph)dhhdppda?(n-1)epeh
- Sh1 V(ph1hp) ?a?(n-1)(h1h)
- Sp1 V(php1h) ?a?(n-1)(pp1)
- dhh1/2 Sp2p3 V(pp2pp3) ?a?(n-1)(p2p3)
- dpp1/2 Sh2h3 V(hh2hh3) ?a?(n-1)(h2h3)
- (?a?(n)(ij) ltn,aaiajn,agt)