Equation of motion method for generating exact multiphonon states PowerPoint PPT Presentation

presentation player overlay
1 / 49
About This Presentation
Transcript and Presenter's Notes

Title: Equation of motion method for generating exact multiphonon states


1
Equation of motion method for generating exact
multiphonon states
  • N. Lo Iudice
  • Università di Napoli Federico II
  • Trento07

2
From mean field to multiphonon approaches
  • Anharmonic and multiphonon spectra Experimental
    evidence
  • Necessity of going beyond mean field (or
    harmonic) approaches (RPA)
  • Some successful phenomenological (IBM)
  • and microscopic (QPM) multiphonon approaches
  • A new (in principle exact) multiphonon method

3
Collective modes anharmonic features
  • Within mean field
  • Decay into single-particle motion (Landau
    damping)
  • Beyond mean field
  • Coupling to more complex configurations
    (doorway 2p-2h) (collisional damping) determining
    the spreading width

From T. Auman, P.F. Bortignon, H. Hemling, Ann.
Rev. Nucl. Part. Sc. 48, 351 (1998))
4
Multiphonon excitations Exp. evidence
(spherical nuclei)
  • Low-energy
  • M. Kneissl. H.H. Pitz, and A. Zilges, Prog. Part.
    Nucl. Phys. 37, 439 (1996) M. Kneissl. N.
    Pietralla, and A. Zilges, J.Phys. G, 32, R217
    (2006)
  • Two- and three-phonon multiplets
  • Q2 Q30gt, Q2Q2Q30gt
  • Proton-neutron (F-spin) mixed-symmetry states
  • (N. Pietralla et al. PRL 83, 1303 (1999))
  • Q2(p) - Q2(n) (Q2(p) Q2(n)) N0gt,

5
Multiphonon excitations Exp. evidence (spherical
nuclei)
  • High-energy
  • (N. Frascaria, NP A482, 245c(1988) T. Auman,
    P.F. Bortignon, H. Hemling, Ann. Rev. Nucl. Part.
    Sc. 48, 351 (1998))
  • Double
  • D D 0gt
  • and
  • triple
  • D D D 0gt
  • dipole giant resonances

6
Inadequacy of mean field approaches
  • Standard mean field approach RPA
  • RPA is an harmonic approximations
  • H,O ? h? O
  • where
  • O Sph X(ph) ap ah Y(ph) ah ap
    (closed shell nuclei)
  • O Sµ? X(µ?) aµ a ? Y(µ?) aµ a? (open
    shell nuclei)
  • As such, it is not adequate for describing
    anharmonic spectra

7
From mean field to multiphonon approaches
  • For anharmonic effects, a multiphonon space is
    needed
  • Ideal method Boson expansion

  • Sph cph apah ? B B B B B
    B ..
  • and Fermion-Boson mapping
  • Equivalent mapping routes
  • Operator Mapping (S. T. Belyaev and V. G.
    Zelevinsky, Nuc. Phys. 39, 582 (1962))

  • OF ? OB
  • State mapping (T. Marumori et al. Prog. Theor.
    Phys. 31, 1009 (1964))
  • ngt bµ b? .b? 0gt ?
    n) Bi Bj ..Bk 0)
  • HB
    Sn n n) ltnHngt (n
  • Constraint ltnHngt
    (nHBn)

8
From mean field to multiphonon approaches
  • Alternative to Boson expansion
  • Microscopic approaches
  • Nuclear Field theory (Bohr, Mottelsson, Bes,
    Broglia..)
  • P.F. Bortignon, R. A. Broglia, D.R. Bes, and R.
    Liotta, Phys. Rep. 30, 305 (1977)
  • Especially suitable for
  • i) Damping of vibrational modes
  • ii) Spreading widths of giant resonances
  • Quasiparticle-phonon model (QPM)
  • (V.G. Soloviev, Theory of Atomic Nuclei
    Quasiparticles and Phonons, Bristol, 1992)
  • especially suitable for multiphonon excitations
  • Phenomenological approaches
  • Geometric collective model (GCM) (Greiner)
  • Interacting Boson Model (IBM) (Arima and
    Iachello)

9
Two multiphonon approaches
  • A microscopic one QPM
  • (V. G. Soloviev, Theory of Atomic Nuclei
    Quasiparticles and Phonons, Bristol, 1992
  • H Hsp Vpair VPP VFF
  • Q? Sij X(ij) ai aj Y(ij) aiaj
  • HQPM Si? ?i? Q? Q? Hvq
  • ?? (JM) Sici Q?(i)
  • Sij cij Q (i) Q(j)
  • Sijk cijk Q(i) Q(j) Q(k)
  • A phenomenological oneIBM
  • (Arima Iachello)
  • AJ0,2 S cij (ai ?aj)J0,2
  • AJ0,2 (s, d)
  • IBM) (s)ns (d) nd 0)
  • IBM successful in
  • low-energy
  • spectroscopy

10
A successfull IBM and QPM study!
  • p-? MS states
  • First detected in 94Mo
  • N. Pietralla et al. PRL 83, 1303 (1999)
  • Since then, found in several nuclei
  • Werner et al. PL B550 (02),
  • C. Fransen et al. PRC 71 (06)

11
p-? MS states in IBM and QPM
  • Symmetric
  • n, ?gts QSn 0 gt
  • (Qp Qn)n 0 gt
  • MS
  • n, ?gtMS QAQS (n-1) 0 gt
  • (Qp - Qn) (Qp Qn) (n-1) 0 gt
  • Signature
  • Preserving symmetry
  • M(E2) ? QS n ? n-1
  • Changing symmetry
  • M(M1) ? Jn Jp n ? n

E2
n3
M1
E2
n2
E2
n2
n1
E2

M1
n2
MS
E2

Sym
12
0 in deformed nuclei the need for a microscopic
approach
  • 0 states populated by (p,t) in large abundance
    for the first time in 158Gd
  • (Lesher et al. PRC 65 (2002) )
  • since then, in several deformed nuclei
  • D.A. Meyer et al. PRC 76, 044309 (2006)
  • D. Bucurescu et al. PRC 73, 064309 (2006)
  • The (sdpf) IBM cannot account for all observed
    0 and their properties
  • Zamfir et al. Phys. Rev. C 66 (2002)
  • A microscopic approach is badly needed QPM
  • N.L. A.Sushkov N. Yu. Shirikova, PRC 70 (04),
    PRC, 72 (05)
  • ?n Si Ci (n) i, 0 gt Sij Cij (n)
    (?i ? ?j)0 gt
  • QPM spectroscopic factors
  • Sn(p,t) ?n (p,t) / ?0 (p,t) 2
  • ?n (p,t) lt0n, N 2 P0 00,Ngt

13
Success and limitations of the QPM
  • Fully microscopic and valid

  • at low and high energy.
  • Suitable also for the
  • double
    GDR (Ponomarev, Voronov)
  • Limitations
  • Valid for separable interactions
  • Antisymmetrization enforced in the

  • quasi-boson approximation,
  • Gs not explicitly correlated
  • (Quasi-Boson approx)

14
Further attempts
  • Multistep Shell model (MSM)

  • (R.J. Liotta and C.
    Pomar, Nucl. Phys. A382, 1 (1982))
  • They expand and linearize
  • ltaH, O,O0gt
    ( O Sph X(ph) a p ah )
  • Multiphonon model (MPM)
  • (M. Grinberg, R. Piepenbring et al. Nucl. Phys.
    A597, 355 (1996)
  • Along the same lines
  • Both MSM and (especially) MPM look involved

15
A new (exact) multiphonon approach
  • Eigenvalue problem in a multiphonon space
  • H ? ?
    gt E? ? ? gt
  • ? ? gt ? H Sn ? Hn Hn ??n
    ßgt

  • ( n 0,1.....N )
  • Generation of the n ßgt (basis states)
  • An obvious (prohibitive!!) choice

  • n ßgt ?1, ?2, ?i ,?ngt
  • where (TDA)

  • ?i gt Sph c ph(?i ) ap
    ah 0gt
  • A more workable choice

  • n ßgt S a ph Caph ap ah n-1 a gt
  • (suggested by TDA)
  • n1
    n1 ßgt ?i gt Sph c ph(?i ) ap ah
    0gt
  • But
  • Also with this choice we run into a series of
    problems!!


16
Problem Overcompletness
  • n ßgt S a ph Caph
    ap ah n-1 a gt
  • The multiphonon states ap ah n-1 a gt
  • are not fully antysymmetrized !!!

  • ap ah n-1 a gt
    ?


  • p h
    p h

  • The multiphonon states are
  • not linearly
    independent
  • and form an

  • overcomplete set.

17
Implications of the redundancy
  • n ßgt S j Cj igt
  • having put
  • i gt ap
    ah n-1 a gt (not linearly independent )
  • ?
  • Eigenvalue problem
  • Sj ltiHjgt - Ei ltijgt Cj 0
    of general form
  • But (problems again!!)
  • i. A direct calculation of ltiHjgt and ltijgt is
    prohibitive !!
  • ii. The eigenstates would contain spurious
    admixtures!!
  • How to circumvent these problems?

18
EOM Construction of the Equations
  • Crucial ingredient
  • lt n ß
    H, ap ah n-1 agt
  • Preliminary step
  • Derive
  • lt n ß H, ap ah n-1 agt ( Eß(n)- Ea(n-1))
    lt n ß ap ah n-1 a gt
  • (LHS)
    (RHS)
  • It follows from
  • request
  • lt n ß H n a gt
    E a(n) daß
  • property
  • lt n ß apah n ? gt dn,n-1 lt n ß
    apah n-1 ? gt

19
Equations of Motion LHS
  • Commutator expansion
  • lt n ß H, ap ah n-1 a gt
  • (ep- eh)
    lt n ß ap ah n-1 a gt. linear
  • 1/2 Sijp Vhjpk lt n ß ap
    ah ai aj n-1 a gt not linear
  • Linearization
  • lt n ß H, ap ah n-1 a gt
  • Sph? (ep- eh) d?ß 1/2 Sij Vhjpk lt
    n-1 ? ai aj n-1 a gt
  • lt n
    ß ap ah n-1 ? gt
  • Sph? Aa?(n)(phph) lt n ß ap ah
    n-1 ? gt

Î S ? n-1 ? gtlt n-1 ?
20
LHSRHS AX EX



  • where
  • Aa?(n) ( ij)
    epeh dij (n-1) daß (n-1)
  • VPH?H VHP?P VPP?P
    VHH?H aißj

  • n 1 (?P 0 ?H dhh)
  • Tamm-Dancoff

  • Thus
  • n1 n1 ßgt
    ?i gt Sph c ph(?i ) ap ah 0gt
    C X

?j? Aa?(n) ( ij) X? (ß) (j) (Eß(n) Ea (n-1)
) Xa(ß) (i)
?H lt n-1,?ahah n-1,agt ?P lt
n-1,?apap n-1,agt
Xa(ß) (i ) lt n ß ap ah n-1 agt
A(1) X (ß) (Eß (1) - E0(0) ) X (ß) A(1)
(ij) dijepeh V(phhp)
21
General Eigenvalue Problem
  • Reminder






  • X aß (ph) lt n ß ap ah n-1 a gt ? C aß
    (ph)
  • Insert n ßgt Sa ph C aß
    (ph) ap ah n-1 a gt


  • Xaß(n)(ph) lt n ß ap ah n-1 a
    gt
  • X DC

  • where

?? Aa?(n) X?ß(n) (Eß(n) - Ea(n-1 ) )Xaß(n)
A X E X
(AD)C H C E DC
22
General Eigenvalue Problem
  • Solution of problem i)
  • Aa ß(n) ( ij) epeh dij (n-1) daß (n-1)
  • VPH?H VHP?P VPP?P VHH?Haißj
  • Dij ltijgt lt n-1 a( ah ap)( ap ah)
    n-1 ß gt


(AD)C H C E DC
D ?H (n-1) ?P (n-1) ?H (n-1) ?P (n-1)
C (n-1) X (n-1) C (n-1) X (n-1) ?P (n-2)
recursive relations
Problem i) solved!!!!
23
General Eigenvalue Problem
  • Solution of Problem ii) (redundancy)

  • Removal of redundancy Choleski
  • D 0 ? D L LT
    L ?
  • Determination of L ?lij follows from D
    L LT ?
  • l211
    d11
  • ? Recursive formulas l11 lj1 dj1

  • l2ii dii Sk1,i-1
    l2ik
  • lii
    lji dji Sk1,i-1 lik ljk

(AD)C H C E DC
Det D 0
l11 0 0 0 0 0 l21 l22 0 0 0.. .0 l31
l32 l33 0 0.. .0 li1 ...lii 0....0 lN1
lN2 lNN-1 lNN
24
General Eigenvalue Problem
  • Solution of Problem ii) (redundancy)
  • D 0 ? D L LT
    L ?



  • Property
  • DetD (DetL)2 l112 l222 ...lii2. ?21
    ?2i (D ?i gt ?i ?i gt )



  • ?
    ? lnn 0 ? ?n gt linearly dependent
  • Numerical stability
  • Sequence order lii ljj ? j
    gt i
  • Once lnn 0 ? lii 0
    ? i gtn ? stop at the nth step

l11 0 0 0 0 0 l21 l22 0 0 0.. .0 l31
l32 l33 0 0.. .0 li1 ...lii 0....0 lN1
lN2 lNN-1 lNN
(AD)C H C E DC
Det D 0
Det D 0
Det L 0
X
25
General Eigenvalue Problem
  • Solution of Problem ii) (redundancy)
  • Choleski decomposition
  • Matrix inversion


  • Exact
    eigenvectors

  • n ßgt S aph Caph ap
    ah n-1 a gt ? H n (phys)

(AD)C H C E DC
D D
HC (D-1AD)C E C
26
Iterative generation of phonon basis
  • Starting point 0gt
  • Solve
    H(1) C(1) E(1) C(1)


  • n1, agt

  • X(1) ?(1)
  • Solve
    H(2) C (2) E (2) C
    (2)


  • n2,agt

  • X(2) ?(2)

  • X(n-1) ?(n-1)
  • Solve
    H(n) C (n) E
    (n) C (n)

  • X(n) ?(n)
    n,a.gt

27
H Spectral decomposition, diagonalization
  • H S na E a(n) n
    agtltna (diagonal)
  • S na ß n
    agtltna H nßgtltnß (off-diagonal)

  • n
    n 1, n2
  • Off-diagonal terms Recursive formulas
  • lt n ß H n-1 a gt
    Sph? ?a? (n-1)(ph) X?(ß) (ph)
  • lt n ß H n-2 a
    gt S Vpphh X?(ß) (ph) X?a(a) (ph)
  • Outcome of diagonalization H ??gt E? ??gt

??gt Sna Ca(?) (n) nagt
nagt S? C?(a) ap ah n-1?gt
28
16O as theoretical lab
  • Structure of 16O A theoretical challenge
  • Pioneering work First excited 0 as deformed
    4p-4h excitations
  • G. E. Brown, A. M. Green, Nucl. Phys. 75, 401
    (1966)
  • (TDA) IBM (includes up to 4 TDA Bosons)
  • H. Feshbach and F. Iachello, Phys. Lett. B 45, 7
    (1973) Ann. Phys. 84, 211 (194)
  • SM up to 4p-4h and 4 h?
  • W.C. Haxton and C. J. Johnson, PRL 65, 1325
    (1990)
  • E.K. Warbutton, B.A. Brown, D.J. Millener, Phys.
    Lett. B293,7(1992)
  • Self-consistent Green function (SCGF) (extends
    RPA so as to include dressed s.p propagators and
    coupling to two-phonons)
  • C. Barbieri and W.H. Dickhoff, PRC 68, 014311
    (2003)
  • W.H. Dickhoff and C. Barbieri, Pro. Part. Nucl.
    Phys. 25, 377 (2004)
  • No-core SM (NCSM) Huge space!!!
  • Symplectic No-core SM (SpNCSM) a promising tool
    for cutting the SM space

29
Numerical test A 16
  • Calculation up to 3-phonons and 3h?
  • Hamiltonian
  • H H0 V Si hNils(i) Gbare
    ( VBonnA ? Gbare)
  • CM motion (F. Palumbo Nucl. Phys. 99 (1967))
  • H ?
    H Hg
  • Hg g
    P2/(2Am) (½) mA ?2 R2
  • Consistent choice of ph space It must
    includes all ph configurations up to 3h?
  • H ? H??(int) Fn(CM) (E? En(CM)) ??(int)
    Fn(CM)
  • For ggtgt1 E(ngt0)(CM) E0(CM) gtgt (Ev E0(CM))

  • ??(int) F(ngt0)(CM)

X
30
Ground state
  • ?0gt C(0)0 0gt
  • S? C?(0) ?, 0gt
  • S ?1?2 C?1?2 (0) ? 1 ? 2, 0 gt
  • ?, 0gt ? 1 ? 2, 0 gt
  • 1 lt ?0?0gt P0 P1 P2

31
16O negative parity spectrum
  • Up to three phonons

32
E.m. response
??gt Sn? C?(?) (n) n?1?2. ?n gt

  • C3 ?1 ?2 ?3 gt
  • C1 ?1 gt
  • C2 ?1 ?2gt
  • C0 0gt
  • gs
  • MPEM
  • ?gt Sph c ph(?) ap ah0gt
  • ?gt
  • 0gt
  • gs
  • TDA

33
IVGDR
  • 1-gtIV 1(p-h) (1h?)gt


34
ISGDR
  • 1-gtIS 1(p-h) (3 h?)gt 2(p-h) (1h? 2h?)gt
    3(p-h) (1h? )gt
  • Toroidal

35
Octupole modes
  • 3-gtIS 1(p-h) (3 h?)gt 2(p-h) (1h? 2h?)gt
    3(p-h) (1h? )gt
  • Low-lying

36
Effect of CM motion
37
Effect of the CM motion
38
Concluding remarks
  • The multiphonon eigenvalue equations
  • - have a simple structure
  • yield exact eigensolutions of a general H
  • The 16O test shows that
  • an exact calculation in the full multiphonon
    space is feasible
  • at least up to 3 phonons and 3 h?.
  • To go beyond
  • Truncation of the
    space needed !!!
  • Truncation is feasible (the phonon states are
    correlated).
  • A riformulation for an efficient truncation is
    in progress

39
Perspectives New formulation
  • ap ah n-1 a gt ? O? n-1 a gt
    O?
    Sph cph(? ) ap ah 0gt
  • lt n ß H, ap ah
    n-1 agt ? lt n ß H, O? n-1 agt








??? Aa?(n) (?,?) X(ß)? ? Eß(n) X (ß)? ?
X(ß)a? lt n ß O? n-1 a gt
??? (kl) lt ? akal ?gt
?a?(n-1) (kl) lt n-1,? akal n-1,agt
Aa?(n) (?,?) E? Ea(n-1) d? ? da?
??? V ?a?(n-1)
n ßgt Sa? C(ß)a? O? n-1 a gt
SC(ß) ?i
?1,.?i.?N gt C (ß) ?i S C(ß)a?1
C(a) ??2 C (?)d?3
40
Vertices
  • TDA (n1) MPEM (n3)

?
--------
---------
p
?
h
p
h
?
a
Vphhp
??? V ?a?(n-1)
41
Acknowledgments
  • J. Kvasil, F. Knapp (Prague)
  • F. Andreozzi, A. Porrino (Napoli)

42
  • THANK YOU

43
E2 response up to 3 h? Running sum
  • Sn Sn (En E0(0) ) Bn(E2,0?2n)
  • Rn Sn/SEW(E2)
  • It is necessary to enlarge the space!!

44
E2 response up to 3 h?
  • S(?,E2) Sn Bn(E2,0?2n) ??(?-?n)
  • ??(x) (?/2p) / x2 (?/2)2
  • M(E2µ) S(p)ep rp2 Y 2µ

45
Effect of CM on the E2 response
46
Multiphonon excitations Exp. Evidence (deformed
nuclei)
  • (Some of the) 0 states
  • observed in large abundance in (p,t)
  • S. R. Lesher et al. PR C 66, 051305(R)(2002).
  • H.-F. Wirth et al. PRC 69, 044310 (2004).
  • D. Bucurescu et al, PRC 73, 064309 (2006).
  • D. A. Meyer et al., PRC 74, 044309 (2006).
  • M1 mode built on excited states
  • observed in two-step ?-cascade
  • M. Krticka, F. Becvar et al. PRL 92 , 172501
    (2004).


47
From TDA to RPA
  • A(n) B(n)
    X(n)
  • (E(n) -
    E(n-1))
  • B(n) A(n)
    -Y(n)

48
  • Aa?(n) (phph)dhhdppda?(n-1)epeh
  • Sh1 V(ph1hp) ?a?(n-1) (h1h)
  • Sp1 V(php1h) ?a?(n-1) (pp1)
  • dhh Sp2p3 V(pp2pp3)?a?(n-1) (p2p3)
  • Sh2h3 V(ph2ph3)?a?(n-1)(h2h3)
  • dpp Sh2h3 V(hh2hh3)?a?(n-1)(h2h3)
  • Sp2p3 V(hp2hp3)?a?(n-1)(p2p3)
  • Ba?(n) (phph)
  • Sh2 V(p ph2 h)?a?(n-1)(h2h)
  • Sp2 V(hhp2p)?a?(n-1)(pp2)

49
AX EX
  • where
  • Aa?(n) (phph)dhhdppda?(n-1)epeh
  • Sh1 V(ph1hp) ?a?(n-1)(h1h)
  • Sp1 V(php1h) ?a?(n-1)(pp1)
  • dhh1/2 Sp2p3 V(pp2pp3) ?a?(n-1)(p2p3)
  • dpp1/2 Sh2h3 V(hh2hh3) ?a?(n-1)(h2h3)
  • (?a?(n)(ij) ltn,aaiajn,agt)
Write a Comment
User Comments (0)
About PowerShow.com