Closure Properties of Regular Languages - PowerPoint PPT Presentation

1 / 36
About This Presentation
Title:

Closure Properties of Regular Languages

Description:

If L is regular, then so is LR. 8. Proof. 9. Homomorphism. Suppose and are alphabets. h: ... Let L1 and L2 be languages on the same alphabet. ... – PowerPoint PPT presentation

Number of Views:285
Avg rating:3.0/5.0
Slides: 37
Provided by: TruHoa3
Category:

less

Transcript and Presenter's Notes

Title: Closure Properties of Regular Languages


1
Closure Properties of Regular Languages
  • L1 and L2 are regular.
  • How about L1?L2, L1?L2 , L1L2 , L1, L1 ?

2
Theorem 1
  • If L1 and L2 are regular, then so are L1?L2,
    L1?L2 , L1L2 , L1, L1.
  • (The family of regular languages is closed under
    intersection, union, concatenation, complement,
    and star-closure.)

3
Proof
  • L1 L(r1) L2 L(r2)
  • L(r1 r2) L(r1)?L(r2)
  • L(r1 . r2) L(r1)L(r2)
  • L(r1) (L(r1))

4
Proof
  • M (Q, ?, ?, q0, F) accepts L1.
  • M (Q, ?, ?, q0, Q F) accepts L1.

5
Proof
  • M1 (Q, ?, ?1, q0, F1) accepts L1.
  • M2 (P, ?, ?2, p0, F2) accepts L2.

a1
an
q0
qf
?1(qi, a) qk
a1
an
p0
pf
?2(pj, a) pl
?1((qi, pj), a) (qk, pl)
6
Proof
  • Example
  • L1 abn n ? 0
  • L2 anb n ? 0
  • L1?L2 ab

7
Theorem 2
  • The family of regular languages is closed under
    reversal
  • If L is regular, then so is LR.

8
Proof
  • ?

9
Homomorphism
  • Suppose ? and ? are alphabets.
  • h ? ? ?
  • is called a homomorphism

10
Homomorphism
  • Extended definition
  • w a1a2 ... an
  • h(w) h(a1)h(a2) ... h(an)

11
Homomorphism
  • If L is a language on ?, then its homomorphic
    image is defined as
  • h(L) h(w) w ? L

12
Example
  • ? a, b
  • ? a, b, c
  • h(a) ab h(b) bbc
  • h(aba) abbbcab
  • L aa, aba ? h(L) abab, abbbcab

13
Homomorphism
  • If L is the language on ? of a regular expression
    r,
  • then the regular expression for h(L) is obtained
    by
  • applying the homomorphism to each ? symbol of r.

14
Example
  • ? a, b
  • ? b, c, d
  • h(a) dbcc h(b) bdc
  • r (a b)(aa) L L(r)
  • h(r) (dbcc (bdc))(dbccdbcc)

15
Theorem 3
  • The family of regular languages is closed under
    homomorphism
  • If L is regular, then so is h(L).

16
Proof
  • Let L(r) L for some regular expression r.
  • Prove h(L(r)) L(h(r)).

17
Homework
  • Exercises 2, 4, 6, 8, 9, 11, 18, 22 of Section
    4.1 - Linzs book.
  • Presentation Section 4.3 - Linzs book
    (pigeonhole principle pumping lemma and
    examples).

18
Right Quotient
  • Let L1 and L2 be languages on the same alphabet.
  • Then the right quotient of L1 with L2 is defined
    as
  • L1/L2 x xy ? L1 and y ? L2

19
Example
  • L1 anbm n ? 1, m ? 0?ba
  • L2 bm m ? 1
  • L1/L2 ?

20
Example
  • L1 anbm n ? 1, m ? 0?ba
  • L2 bm m ? 1
  • L1/L2 anbm n ? 1, m ? 0

21
Example
L1 anbm n ? 1, m ? 0?ba
b
a
b
a
q0
q1
q2
b
a
q3
q5
a
a, b
a, b
q4
22
Example
L1 anbm n ? 1, m ? 0?ba
L2 bm m ? 1
b
a
b
a
q0
q1
q2
?(q0, x) qi ?(qi, y) ? F and y ? L2
b
a
q3
q5
a
a, b
a, b
q4
23
Example
L1 anbm n ? 1, m ? 0?ba
L2 bm m ? 1
b
a
b
a
q0
q1
q2
?(q0, x) qi ?(qi, y) ? F and y ? L2
b
a
q3
q5
a
a, b
a, b
q4
24
Theorem
  • The family of regular languages is closed under
    right quotient
  • If L1 and L2 are regular, then so is L1/L2.

25
Proof
  • M (Q, ?, ?, q0, F) accepts L1.
  • M (P, ?, ?, q0, F) accepts L1/L2.
  • If y ? L2 and ?(qi, y) ? F ? add qi to F

26
Proof
  • M (Q, ?, ?, q0, F) accepts L1.
  • M (P, ?, ?, q0, F) accepts L1/L2.
  • If y ? L2 and ?(qi, y) ? F ? add qi to F
  • Mi (P, ?, ?, qi, F) and L(Mi) ? L2 ? ?.

27
Example
  • L1 L(abaa)
  • L2 L(ab)
  • L1/L2 ?

28
Example
L1 L(abaa)
L1 L(ab)
a
a
a
b
L(M0) ? L2 ? L(M1) ? L2 a L(M2) ? L2
a L(M3) ? L2 ?
q0
q1
q2
b
b
q3
a, b
29
Example
L1 L(abaa)
L1 L(ab)
a
a
a
b
L(M0) ? L2 ? L(M1) ? L2 a L(M2) ? L2
a L(M3) ? L2 ?
q0
q1
q2
b
b
q3
a, b
30
Questions about RLs
  • Given a regular language L on ? and any w ? ?,
  • is there an algorithm to determine whether or
    not
  • w ? L?.

31
Questions about RLs
  • Given a regular language L on ? and any w ? ?,
  • is there an algorithm to determine whether or
    not
  • w ? L?.
  • Yes.

32
Questions about RLs
  • Is there an algorithm to determine whether or not
  • a regular language is empty, finite, or
    infinite?.

33
Questions about RLs
  • Is there an algorithm to determine whether or not
  • a regular language is empty, finite, or
    infinite?.
  • Yes.

34
Questions about RLs
  • Given two regular languages L1 and L2, is there
    an algorithm to determine whether or not L1
    L2?.

35
Questions about RLs
  • Given two regular languages L1 and L2, is there
    an algorithm to determine whether or not L1
    L2?.
  • Yes.

36
Homework
  • Exercises 1, 2, 3, 5, 9 of Section 4.2 - Linzs
    book.
  • Exercises 3, 4, 5, 6, 8, 10, 12 of Section 4.3 -
    Linzs book.
Write a Comment
User Comments (0)
About PowerShow.com