Title: Proof-nets and semantic applications
1Proof-nets and semantic applications
2Semantic proof nets
xe, child e?t - child(x) t hence child
e?t - ?x.child(x)e?t
3 e
t-
x
e-
t
?x
child
4 e
t-
x
e-
t
?x
child
5 e
t-
x
e-
t
?x
child
6 e
t-
x
e-
t
x
?x
child
?x.child(x)
7 e
t-
x
e-
t
x
?x
child
?x.child(x)
8each, every
- A determiner like every, each decomposes into
- A quantifier, for instance ?
- type (e?t)?t
- A connective, for instance ?
- type t?(t?t)
9 - needs two predicates (e ? t) for obtaining one
proposition (t) - A determiner is therefore of type
- (e?t)?((e?t)?t)
10 - A determiner is therefore associated with a
sequent - Its semantic is represented by its proof
11deduction
12remark
- With a very remarkable step an application of
the contraction rule! - ? necessity of working inside Intuitionistic
linear logic with exponentials - The exact sequent which encodes the determiner is
!e
!e
)
)
((
)
(
)
(
),
(
t
t
t
t
t
!e
t
t
t
--
--o
--o
--o
--o
--o
--o
--o
--o
13Exponentials
14Exponentials (one-sided)
15Representation of the proof
c
?
?
(!e o t) o ((!e o t) o t)
16every child
c
child
(!e o t) o t
?
?
17every child likes to play
c
likes to play
t
child
?
?
18Application
-
A
A o B
19Application
A -
B
20Abstraction
B -
21Abstraction
B -
B o A
22Syntactic proof-nets
- Proof-nets for Lambek calculus
- Like PN for MILL
- condition on semi-planarity
23every child plays
np -
s
s -
np\s
np
(s/(np\s)) -
n
s -
n - child
np\s - plays
s
(s/(np\s))/n - every
24every child plays
np -
s
s -
np\s
np
(s/(np\s)) -
n
s -
n - child
np\s - plays
s
(s/(np\s))/n - every
25Attention!
WRONG !
np -
s
s -
np\s
np
(s/(np\s)) -
n
s -
n - child
np\s - plays
s
(s/(np\s))/n - every
26Parsing
- through homomorphism
- H(s) t
- H(np) !e
- H(n) !e o t
- H(A/B) H(B\A) H(B) o H(A)
27every child plays
np -
s
s -
np\s
np
(s/(np\s)) -
n
s -
n - child
np\s - plays
s
(s/(np\s))/n - every
28every child plays
!e
t
t
!e o t
!e
(!e o t) o t
!e o t
t
!e o t child
!e o t plays
t
(!e o t) o ((!e o t) ot)) every
29 - semantic recipes
- child ?x.child(x)
- every ?P.?Q.?(?x.(P(x)?Q(x))
- plays ?x.play(x)
30 - represented by proof-nets
31 - represented by proof-nets
d
32every
c
?
?
(!e o t) o ((!e o t) o t)
33plugging lexical semantic types to the
homomorphic PN by cut
34 !e
t
t
!e o t
!e
(!e o t) o t
!e o t
t
!e o t child
!e o t plays
t
(!e o t) o ((!e o t) ot)) every
CUT
35 !e
t
t
!e o t
!e
t
!e
(!e o t) o t
t
!e o t plays
t
(!e o t) o ((!e o t) ot)) every
d
child
36 !e
t
t
!e o t
!e
t
!e
(!e o t) o t
t
!e o t plays
t
(!e o t) o ((!e o t) ot)) every
d
child
CUT
37 !e
t
d
t
!e o t
!e
t
!e
(!e o t) o t
t
plays
t
(!e o t) o ((!e o t) ot)) every
d
child
38 PNevery
!e
t
d
t
!e o t
!e
t
!e
(!e o t) o t
t
plays
t
(!e o t) o ((!e o t) ot)) every
d
child
CUT
39 !e
t
c
plays
t
d
?
?
child
40 !e
t
c
plays
t
d
?
?
child
41 !e
t
c
plays
t
d
?
?
?
child
42 !e
t
c
plays
?x
t
d
?
?
?
child
43 !e
t
c
plays
?x
t
d
?
?
?
?
child
44 !e
t
c
plays
?x
plays
t
d
?
?
?
?
child
45 !e
t
c
plays
?x
plays
t
d
?
?
child
?
?
child
46 child(x)
!e
t
c
plays
?x
plays
t
d
?
?
child
?
?
child
47 plays(x)
child(x)
!e
t
c
plays
?x
plays
t
d
?
?
child
?(?x.(?(child(x),plays(x))))
?
?
child
48Logical synthesisfrom a formula to a sentence
- the reverse story
- Start
- a semantic formula ?
- semantic recipes for lexical entries ?1, ?2,
?n - Goal
- A sentence using all these recipes the meaning of
which is ?
49Usual solutions?-term unification
? skiss(p,m)
Peter np p
kisses (np\s)/np ?x.?y.kiss(y,x)
Mary np m
GOAL
50s-
np
?
kiss(?,?)
np
?y.kiss(y, ?)
?
? skiss(p,m)
Peter np- p
kisses (np\s)/np ?x.?y.kiss(y,x)
Mary np- m
51s-
np
kiss(?,?)
?
np
?y.kiss(y, ?)
?
? skiss(p,m)
Peter np- p
kisses (np\s)/np ?x.?y.kiss(y,x)
Mary np- m
52kiss(?,?) kiss(p,m) ? ? m ? p
s-
np
?
kiss(?,?)
np
?y.kiss(y, ?)
?
? skiss(p,m)
Peter np- p
kisses (np\s)/np ?x.?y.kiss(y,x)
Mary np- m
53kiss(?,?) kiss(p,m) ? ? m ? p
? m
s-
np
?
kiss(?,?)
np
?y.kiss(y, ?)
?
? skiss(p,m)
Peter np- p
kisses (np\s)/np ?x.?y.kiss(y,x)
Mary np- m
54kiss(?,?) kiss(p,m) ? ? m ? p
? m
? p
s-
np
?
kiss(?,?)
np
?y.kiss(y, ?)
?
? skiss(p,m)
Peter np- p
kisses (np\s)/np ?x.?y.kiss(y,x)
Mary np- m
55The net is a proof-net for L, therefore the
correct sentence is Peter kisses Mary
kiss(?,?) kiss(p,m) ? ? m ? p
? m
? p
s-
np
?
kiss(?,?)
np
?y.kiss(y, ?)
?
? skiss(p,m)
Peter np- p
kisses (np\s)/np ?x.?y.kiss(y,x)
Mary np- m
56But
- Non decidability for second order
- xf f(fa) ?
- no mgu
- two incomparable solutions
- ?z.z(fa)
- ?z.f(za)
57the use of PN
- Generation (or synthesis )
- research of a proof in L (which is decidable!),
helped by a semantic form
58The problem
- Find PNL such that
- plug by cuts lexical PNs PN?1, PN?2, PN?n
- cut-elimination
- Given PN?
59?
APNL
T1
T2
Tn
60?
AH(PNL)
HT1
HT2
HTn
CUT
CUT
61PN?
62the execution formula
- Let P be a PN, U the set of its axiom links, ?
the set of its cut links - u incidence matrix of U
- ? incidence matrix of ?
63 Cut elimination between axioms
e1
e2
e3
e4
e1
e2
e3
e4
e1
e2
e3
e4
- X, X?
- X, X?
CUT
- X, X?
64 - after a first step of cut-elimination on axioms
u replaced by u?u - links coming from cut-elimination of level 1
- To suppress all the links the premisses of which
are premisses of a new cut and all the links
which had no incident cut - u?u - ?2u?u? - u?u?2 ?2u?2
- (1- ?2)u?u(1- ?2)
65 - Idem for links coming from elimination of level
2, 3, , n, cuts - Resulting graph after cut-elimination
66?
U
HT1
HT2
HTn
CUT
?
CUT
67Res(U,?)
68 - U can be calculated from Res(U,?) and ?
- Cf. PhD thesis by Sylvain POGODALLA
- http//www.xrce.xerox.com/pogodalla
- Condition that each lexical semantics contain
at least one constant which intervenes in the
global semantic representation.