Title: Francisco Navarro-L
1Charged Rotating Black Holes in Higher Dimensions
- Francisco Navarro-Lérida1, Jutta Kunz1, Dieter
Maison2, Jan Viebahn1
MG11 Meeting, Berlin 25.7.2006
2 Outline
- Introduction
- Einstein-Maxwell Black Holes
- Einstein-Maxwell-Dilaton Black Holes
- Einstein-Maxwell-Chern-Simons Black Holes
- Conclusions
3 Introduction
- 4D Einstein-Maxwell (EM) black holes
- Dgt4 Einstein-Maxwell black holes
Static Rotating
Uncharged Schwarzschild (M) Kerr (M, J)
Charged Reissner-Nordström (M, Q, P) Kerr-Newman (M, J, Q, P)
Static Rotating
Uncharged Tangherlini (M) Myers-Perry (M, Ji)
Charged Tangherlini (M, Q) ?
4 Introduction
- Aim Higher dimensional Abelian black holes
asymptotically flat and with regular horizon - Black rings are allowed for Dgt4 EmparanReall
2002 -
- Dgt4 EM
nothing (pure EM theory)
dilaton (EMD theory)
Chern-Simons term (EMCS theory just for odd D)
5 Einstein-Maxwell Black Holes
- Einstein-Maxwell action
- Maxwell field strength tensor
- Einstein equations
- with stress-energy tensor
- Maxwell equations
6 Einstein-Maxwell Black Holes
- General black holes characterized by mass M
N(D-1)/2 angular momenta Ji and charge Q(no
magnetic charge for Dgt4) - No analytical charged rotating solutions for Dgt4
- Numerical approach too complicated in the
general case - Restricted case odd dimensional black holes with
equal-magnitude angular momenta - Simplificationfield equations reduce to a system
of 5 ODEs Kunz, Navarro-Lérida, Viebahn 2006 - Similar procedure for EMD and EMCS theories
7 Einstein-Maxwell Black Holes (odd D)
8 Einstein-Maxwell Black Holes (odd D)
- Regular horizon at rrH with f(rH)0
- Killing vector null at the horizon?horizon
angular velocity - Removing a0 first integral
- Mass formula Gauntlett, Myers, Townsend 1999
9 Einstein-Maxwell Black Holes (odd D)
Domain of existence (scaled quantities)
Angular momentum
Mass
10 Einstein-Maxwell Black Holes (odd D)
- Gyromagnetic ratio
- g2 for D4 but ...
- Perturbative value g(D-2) Aliev 2006
11 Einstein-Maxwell-Dilaton Black Holes
- Einstein-Maxwell-Dilaton action
- (units 16 ? GD1) hdilaton coupling constant
- Field equations
- Analytical solutions!!! Kaluza-Klein black
holesKunz, Maison, Navarro-Lérida, Viebahn 2006
12 Einstein-Maxwell-Dilaton Black Holes
(Kaluza-Klein)
- Myers-Perry solution as seed
- Fixed dilaton coupling constant
13 Einstein-Maxwell-Dilaton Black Holes
(Kaluza-Klein)
- Some quantities
- Horizon
- Surface gravity
- Domains of existance Extremal solutions ?sg0
- Scaled quantities
14 Einstein-Maxwell-Dilaton Black Holes
(Kaluza-Klein)
15 Einstein-Maxwell-Dilaton Black Holes
(Kaluza-Klein)
16 Einstein-Maxwell-Dilaton Black Holes (odd D)
Einstein-Maxwell-Dilaton Black Holes (odd D)
- Restricted case odd D, equal-magnitude angular
momenta - Same ansatz as in EM theory ??(r)
- No constraint on the dilaton coupling constant
17 Einstein-Maxwell-Chern-Simons Black Holes
- Just for odd D(2N1) Chern-Simons term AFN
- Einstein-Maxwell-Chern-Simons action
- Einstein equations
- Maxwell equations
- Kunz, Navarro-Lérida 2006
18 Einstein-Maxwell-Chern-Simons Black Holes
- Black hole solutions regular horizon rrH
- Restricted case same ansatz as for EM black
holes - First integral of the system of ODEs
- Mass formula
- Scaling
19 Einstein-Maxwell-Chern-Simons Black Holes (D5)
- Redefinition
- Cases
- Analytical solutions only for ?1Breckenridge,
Myers, Peet, Vafa 1997 - Good for testing the numerical
scheme(restricted case J1J2) - Very high accuracy!!!
?0 Einstein-Maxwell theory ?1 bosonic sector
of minimal D5 supergravity ?gt1
20 Einstein-Maxwell-Chern-Simons Black Holes (D5)
- Domain of existence(extremal solutions)
- Extremal ?1 EMCS
- (supersymmetric branch)
- Mass saturates
- Angular momentum satisfies
- Vanishing horizon angular velocity
- Instability beyond ?1 (up to ?2)
supersymmetry marks a borderline between
stability and instability - ?2 is a special case infinite set of
extremal black holes with the same charges?
21 Einstein-Maxwell-Chern-Simons Black Holes (D5)
Four types of black holes
- Type I Corrotating ? J 0 and ?0 , J0
- Type II Static horizon ?0 but non-vanishing J
? 0 (? 1 and ?1 ) extremal) - Type III Counterrotating ? J lt 0 ( ? gt 1)
- Type IV Rotating horizon ? ? 0 but J0 (? 2
and ?2 ) extremal)
22 Einstein-Maxwell-Chern-Simons Black Holes (D5)
The horizon mass may be negative !!!
Black holes are not uniquely determined by M, Ji,
Q (non-uniqueness even for horizons of spherical
topology)
23 Conclusions
- Abelian higher dimensional charged rotating BHs
- Restricted case odd D equal-magnitude angular
momenta ) system of ODEs - EM theory non-constant gyromagnetic ratio for
Dgt4 - Analytical Kaluza-Klein solutions in EMD theory
- (Odd-D) EMCS theory D5 is a special case
- ?1 supersymmetry marks a borderline between
stability and instability - Four types of black holes (for ?gt2)
- Non-uniqueness (for ?gt2)