Francisco Navarro-L - PowerPoint PPT Presentation

About This Presentation
Title:

Francisco Navarro-L

Description:

Gyromagnetic ratio. g=2 for D=4 but ... Perturbative value g=(D-2) Aliev 2006 ... EM theory: non-constant gyromagnetic ratio for D 4 ... – PowerPoint PPT presentation

Number of Views:26
Avg rating:3.0/5.0
Slides: 24
Provided by: zarmUni
Category:

less

Transcript and Presenter's Notes

Title: Francisco Navarro-L


1
Charged Rotating Black Holes in Higher Dimensions
  • Francisco Navarro-Lérida1, Jutta Kunz1, Dieter
    Maison2, Jan Viebahn1

MG11 Meeting, Berlin 25.7.2006
2
Outline
  • Introduction
  • Einstein-Maxwell Black Holes
  • Einstein-Maxwell-Dilaton Black Holes
  • Einstein-Maxwell-Chern-Simons Black Holes
  • Conclusions

3
Introduction
  • 4D Einstein-Maxwell (EM) black holes
  • Dgt4 Einstein-Maxwell black holes

Static Rotating
Uncharged Schwarzschild (M) Kerr (M, J)
Charged Reissner-Nordström (M, Q, P) Kerr-Newman (M, J, Q, P)
Static Rotating
Uncharged Tangherlini (M) Myers-Perry (M, Ji)
Charged Tangherlini (M, Q) ?
4
Introduction
  • Aim Higher dimensional Abelian black holes
    asymptotically flat and with regular horizon
  • Black rings are allowed for Dgt4 EmparanReall
    2002
  • Dgt4 EM

nothing (pure EM theory)
dilaton (EMD theory)
Chern-Simons term (EMCS theory just for odd D)
5
Einstein-Maxwell Black Holes
  • Einstein-Maxwell action
  • Maxwell field strength tensor
  • Einstein equations
  • with stress-energy tensor
  • Maxwell equations

6
Einstein-Maxwell Black Holes
  • General black holes characterized by mass M
    N(D-1)/2 angular momenta Ji and charge Q(no
    magnetic charge for Dgt4)
  • No analytical charged rotating solutions for Dgt4
  • Numerical approach too complicated in the
    general case
  • Restricted case odd dimensional black holes with
    equal-magnitude angular momenta
  • Simplificationfield equations reduce to a system
    of 5 ODEs Kunz, Navarro-Lérida, Viebahn 2006
  • Similar procedure for EMD and EMCS theories

7
Einstein-Maxwell Black Holes (odd D)
  • Ansätze (D2N1)

8
Einstein-Maxwell Black Holes (odd D)
  • Regular horizon at rrH with f(rH)0
  • Killing vector null at the horizon?horizon
    angular velocity
  • Removing a0 first integral
  • Mass formula Gauntlett, Myers, Townsend 1999

9
Einstein-Maxwell Black Holes (odd D)
Domain of existence (scaled quantities)
Angular momentum
Mass
10
Einstein-Maxwell Black Holes (odd D)
  • Gyromagnetic ratio
  • g2 for D4 but ...
  • Perturbative value g(D-2) Aliev 2006

11
Einstein-Maxwell-Dilaton Black Holes
  • Einstein-Maxwell-Dilaton action
  • (units 16 ? GD1) hdilaton coupling constant
  • Field equations
  • Analytical solutions!!! Kaluza-Klein black
    holesKunz, Maison, Navarro-Lérida, Viebahn 2006

12
Einstein-Maxwell-Dilaton Black Holes
(Kaluza-Klein)
  • Myers-Perry solution as seed
  • Fixed dilaton coupling constant

13
Einstein-Maxwell-Dilaton Black Holes
(Kaluza-Klein)
  • Some quantities
  • Horizon
  • Surface gravity
  • Domains of existance Extremal solutions ?sg0
  • Scaled quantities

14
Einstein-Maxwell-Dilaton Black Holes
(Kaluza-Klein)
15
Einstein-Maxwell-Dilaton Black Holes
(Kaluza-Klein)
  • Similar pattern for Dgt6

16
Einstein-Maxwell-Dilaton Black Holes (odd D)
Einstein-Maxwell-Dilaton Black Holes (odd D)
  • Restricted case odd D, equal-magnitude angular
    momenta
  • Same ansatz as in EM theory ??(r)
  • No constraint on the dilaton coupling constant

17
Einstein-Maxwell-Chern-Simons Black Holes
  • Just for odd D(2N1) Chern-Simons term AFN
  • Einstein-Maxwell-Chern-Simons action
  • Einstein equations
  • Maxwell equations
  • Kunz, Navarro-Lérida 2006

18
Einstein-Maxwell-Chern-Simons Black Holes
  • Black hole solutions regular horizon rrH
  • Restricted case same ansatz as for EM black
    holes
  • First integral of the system of ODEs
  • Mass formula
  • Scaling

19
Einstein-Maxwell-Chern-Simons Black Holes (D5)
  • Redefinition
  • Cases
  • Analytical solutions only for ?1Breckenridge,
    Myers, Peet, Vafa 1997
  • Good for testing the numerical
    scheme(restricted case J1J2)
  • Very high accuracy!!!

?0 Einstein-Maxwell theory ?1 bosonic sector
of minimal D5 supergravity ?gt1
20
Einstein-Maxwell-Chern-Simons Black Holes (D5)
  • Domain of existence(extremal solutions)
  • Extremal ?1 EMCS
  • (supersymmetric branch)
  • Mass saturates
  • Angular momentum satisfies
  • Vanishing horizon angular velocity
  • Instability beyond ?1 (up to ?2)
    supersymmetry marks a borderline between
    stability and instability
  • ?2 is a special case infinite set of
    extremal black holes with the same charges?

21
Einstein-Maxwell-Chern-Simons Black Holes (D5)
Four types of black holes
  • Type I Corrotating ? J 0 and ?0 , J0
  • Type II Static horizon ?0 but non-vanishing J
    ? 0 (? 1 and ?1 ) extremal)
  • Type III Counterrotating ? J lt 0 ( ? gt 1)
  • Type IV Rotating horizon ? ? 0 but J0 (? 2
    and ?2 ) extremal)

22
Einstein-Maxwell-Chern-Simons Black Holes (D5)
The horizon mass may be negative !!!
Black holes are not uniquely determined by M, Ji,
Q (non-uniqueness even for horizons of spherical
topology)
23
Conclusions
  • Abelian higher dimensional charged rotating BHs
  • Restricted case odd D equal-magnitude angular
    momenta ) system of ODEs
  • EM theory non-constant gyromagnetic ratio for
    Dgt4
  • Analytical Kaluza-Klein solutions in EMD theory
  • (Odd-D) EMCS theory D5 is a special case
  • ?1 supersymmetry marks a borderline between
    stability and instability
  • Four types of black holes (for ?gt2)
  • Non-uniqueness (for ?gt2)
Write a Comment
User Comments (0)
About PowerShow.com