Title: Lecture 17 - Open Systems (Solid/Liquid Equilibrium)
1Lecture 17 - Open Systems (Solid/Liquid
Equilibrium)
- Exam 3 (Dec 5 _at_ 130pm)
- Precipitation Dissolution
- Solubility product (Ks0)
- Estimating solubility
- From Ks0 - ignoring complex formation
- Effects of complexation
- pC-pH diagram (estimate max/min solubility)
2Example - Ferric iron solubility
- Fe(OH)3 Fe3 3OH- log Kso -38.8
-
3Ferric Iron Solubility
4Metal Solubility
5Metal Solubility - Effect of Complexes
- Metal cations exist in solution as species other
than the aquo ion - These complexes impact metal solubility
substantially and must be accounted for - Example - Ferric Iron
6Fe(III) Hydrolysis
(A) Fe3 OH- FeOH2 logK1 11.81 (B)
Fe3 2OH- Fe(OH)2 logb2 23.4 (C)
Fe3 4OH- Fe(OH)4- logb4
34.4 OR (A) Fe3 H2O FeOH2
H logK1 -2.19 (B) Fe3 2H2O
Fe(OH)2 2H logb2 -4.60 (C) Fe3
4H2O Fe(OH)4- 4H logb4 -21.6
7System for Fe(III) solubility hydroxo complexes
- System Open
- Components Fe3 H2O
- Species Fe3, FeOH2, Fe(OH)2, Fe(OH)3(s),
Fe(OH)4-, H2O, OH-, H - Equilibria
- H2O H OH- Kw HOH- 10-14
- (plus 4 reactions for Fe-hydoxo
Fe-solubility) - Mass Balance
- Don't need!
- Charge Balance
- Don't need!
8Combine solubility and complex formation
equilibria
- Fe3/Fe(OH)3(s)
- Fe(OH)3 3H Fe3 3H2O log Ks 3.20
- FeOH2/Fe(OH)3(s)
- Fe(OH)3 2H FeOH2 2H2O logKs1 1.01
- Fe(OH)2/Fe(OH)3(s)
- Fe(OH)3 H Fe(OH)2 H2O logKs2 -1.40
- Fe(OH)4-/Fe(OH)3(s)
- Fe(OH)3 H2O Fe(OH)4- H logKs4 -18.40
9Fe(III) - solubility
Fe(OH)3(s)
FeOH2
Fe(OH)4-
Fe3
Fe(OH)2
10Ferric Iron Solubility Predominance
11So What?
- Complexes increase mineral solubility
- Diagram gives pH of min or max solubility
- What are these for ferric iron?
- Many other ligands form solids (e.g., CO32-)
- For systems dominated by a particular solid we
can estimate total metal concentration and
dominant species.
12Carbonate System - Mixed Open System
- System Open
- Components Ca2, CO2(g) H2O
- Species H2CO3, HCO3-,CO32-, CO2(g), H2O, OH-,
H, CaCO3, Ca2 - Equilibria
- H2O H OH- Kw HOH- 10-14
- H2CO3 H HCO3- KA1 HHCO3-/H2CO3
10-6.35 - HCO3- H CO32- KA2 HCO32-/HCO3-
10-10.33 - CO2(g) CO2(l) KH CO2(l)/PCO2 10-1.5
(mol/L-atm) - CaCO3 Ca2 CO32- Kso 10-8.48
- Mass Balance CT H2CO3 HCO3- CO32-
- CaT Ca2
- Charge Balance 2CO32- HCO3- OH-
H 2Ca - Proton Balance Invalid because CO2 is proton
active!!
13What do we know?
- Our carbonate species in open systems
- Total Ca based on solid/liquid
14Final Equation
- Substitute in charge balance equation
- Assume water pH near neutral, thus H, OH-
CO32- are negligible. -
- Solve for H to get pH 8.24
15Importance of mineral dissolution/precipitation
- Natural Waters
- Dictate major cation concentrations (e.g., Ca2,
Mg2) - Dictate carbonate system (particularly in g.w.)
- Treatment systems
- Hardness removal
- Iron removal by aeration
- Phosphate removal
- Polluted waters
- Acid mine drainage results from pyrite dissolution
16Importance of mineral dissolution/precipitation
- Typically non-equilibrium processes (due to slow
kinetics), but we can use equilibrium approaches
because - Often one solid phase controls solution
composition - The optimum pH for mineral precipitation dictated
by equilibrium solubility constant
17Solubility
- Described like all other reactions
- AaBb(s) aA bB Ks
- Ks termed solubility product
- For uncomplexed ligand we get Ks
- CaCO3(s) Ca2 CO32- Kso
- For complexed ligand we use Ks
- CaCO3(s) H Ca2 HCO3- Ks
-
18Aluminum Hydroxide