Title: Summer School
1Summer School
2Contents
- Logistic regression refresher
- Some familiar some less familiar polytomous
models - 1PL/2PL in Stata and R
- PCM/RSM/GRM in R
- Link IRT to CFA/UV in Mplus
- DIF/MIMIC in Mplus
3Types of outcome
- Two categories
- Binary / dichotomous
- Ordered
- e.g. low birthweight (lt 2500g), height gt 6ft, age
gt 70 - Unordered
- e.g. gender, car-ownership, disease status
- Presence of ordering is unimportant for binaries
4Types of outcome
- 3 categories
- Polytomous
- Ordered (ordinal)
- Age (lt30,30-40,41)
- Likert items (str disagree, disagree, , str
agree) - Unordered (nominal)
- Ethnicity (white/black/asian/other)
- Pet ownership (none/cat/dog/budgie/goat)
5Modelling options (LogR/IRT)
6Binary Logistic Regression
7Binary Logistic Regression
Probability of a positive response /
outcome given a covariate
Intercept
Regression coefficient
8Binary Logistic Regression
Probability of a negative response
9Logit link function
- Probabilities only in range 0,1
- Logit transformation is cts in range (inf,inf)
- Logit is linear in covariates
10Simple example cts predictor
- Relationship between birthweight and head
circumference (at birth) - Exposure
- birthweight (standardized)
variable mean sd ----------------------
------ bwt 3381.5g 580.8g --------------
---------------
11Simple example cts predictor
- Outcome
- Head-circumference 53cm
headcirc Freq.
--------------------------- 0
8,898 84.4 1 1,651
15.7 --------------------------- Total
10,549
12Simple example cts predictor
The raw data doesnt show much
13Simple example cts predictor
Logistic regression models the probabilities
(here shown for deciles of bwt)
- bwt_z_grp
- headcirc 0 1 2
3 4 - -------------------------------------------------
------------------- - 0 1,006 993 1,050
946 1,024 - 99.80 98.12 97.95
96.04 93.35 - -------------------------------------------------
------------------- - 1 2 19 22
39 73 - 0.20 1.88 2.05
3.96 6.65 - -------------------------------------------------
------------------- - headcirc 5 6 7
8 9 Total - -------------------------------------------------
--------------------------- - 0 931 922 856
688 381 8,797 - 89.95 84.98 81.84
66.67 35.94 84.33 - -------------------------------------------------
--------------------------- - 1 104 163 190
344 679 1,635
14Simple example cts predictor
Increasing, non-linear relationship
15Simple example cts predictor
- Logistic regression
Number of obs 10432 -
LR chi2(1) 2577.30 -
Prob gt chi2 0.0000 - Log likelihood -3240.9881
Pseudo R2 0.2845 - --------------------------------------------------
---------------------------- - headcirc Odds Ratio Std. Err. z
Pgtz 95 Conf. Interval - -------------------------------------------------
---------------------------- - bwt_z 7.431853 .378579 39.38
0.000 6.72569 8.212159 - --------------------------------------------------
---------------------------- - Or in less familiar log-odds format
- --------------------------------------------------
---------------------------- - headcirc Coef. Std. Err. z
Pgtz 95 Conf. Interval - -------------------------------------------------
---------------------------- - bwt_z 2.005775 .0509401 39.38
0.000 1.905935 2.105616 - _cons -2.592993 .0474003 -54.70
0.000 -2.685896 -2.50009
16Simple example cts predictor
Fitted model logit scale
17Simple example cts predictor
Fitted model logit scale
Cons -2.59
Slope 2.00
18Simple example cts predictor
But alsoa logit of zero represents point at
which both levels of outcome are equally likely
19Simple example cts predictor
Fitted model probability scale
20Simple example cts predictor
Fitted model probability scale
Point at which curve changes direction
21Simple example cts predictor
Observed and fitted values (within deciles of bwt)
22LogR cts predictor - summary
- Logit is linearly related to covariate
- Gradient gives strength of association
- Intercept is related to prevalence of outcome
-
seldom used
- Non-linear (S-shaped) relationship between
- probabilities and covariate
- Steepness of linear-section infers
- strength of association
- Point at which curve changes direction is where
- P(u1X) P(u0X) can be thought of as
the - location is related to prevalence of
outcome
23LogR binary predictor
- Define binary predictor bwt 8lb
- 32 of the sample had a birthweight of 8lb
- Same outcome
- Head circumference gt 53cm
- Does being 8lb at birth increase the chance of
you being born with a larger head?
24Association can be cross-tabbed
- headcirc
- bwt_8lb 0 1 Total
- -------------------------------------------
- 0 6,704 384 7,088
- 94.58 5.42 100.00
- -------------------------------------------
- 1 2,093 1,251 3,344
- 62.59 37.41 100.00
- -------------------------------------------
- Total 8,797 1,635 10,432
- 84.33 15.67 100.00
25Association can be cross-tabbed
- headcirc
- bwt_8lb 0 1 Total
- -------------------------------------------
- 0 6,704 384 7,088
- 94.58 5.42 100.00
- -------------------------------------------
- 1 2,093 1,251 3,344
- 62.59 37.41 100.00
- -------------------------------------------
- Total 8,797 1,635 10,432
- 84.33 15.67 100.00
Familiar with (67041251)/(2093384) 10.43
odds-ratio
26Association can be cross-tabbed
- headcirc
- bwt_8lb 0 1 Total
- -------------------------------------------
- 0 6,704 384 7,088
- 94.58 5.42 100.00
- -------------------------------------------
- 1 2,093 1,251 3,344
- 62.59 37.41 100.00
- -------------------------------------------
- Total 8,797 1,635 10,432
- 84.33 15.67 100.00
Familiar with (67041251)/(2093384) 10.43
odds-ratio
However ln(67041251)/(2093384) 2.345 log
odds-ratio
27Association can be cross-tabbed
- headcirc
- bwt_8lb 0 1 Total
- -------------------------------------------
- 0 6,704 384 7,088
- 94.58 5.42 100.00
- -------------------------------------------
- 1 2,093 1,251 3,344
- 62.59 37.41 100.00
- -------------------------------------------
- Total 8,797 1,635 10,432
- 84.33 15.67 100.00
Familiar with (67041251)/(2093384) 10.43
odds-ratio
However ln(67041251)/(2093384) 2.345 log
odds-ratio
and ln(384)/(6704) ln(0.057) -2.86
intercept on logit scale
28Logit output (from Stata)
- . logit headcirc bwt_8lb
- Logistic regression
Number of obs 10432 -
LR chi2(1) 1651.89 -
Prob gt chi2 0.0000 - Log likelihood -3703.6925
Pseudo R2 0.1823 - --------------------------------------------------
---------------------------- - headcirc Coef. Std. Err. z
Pgtz 95 Conf. Interval - -------------------------------------------------
---------------------------- - bwt_8lb 2.345162 .063486 36.94
0.000 2.220732 2.469592 - _cons -2.859817 .0524722 -54.50
0.000 -2.962661 -2.756974 - --------------------------------------------------
----------------------------
29What lovely output figures!
There is still an assumed s-shape on probability
scale although the curve is not apparent
Linear relationship in logit space
30What lovely output figures!
Intercept -2.86
Slope 2.35
There is still an assumed s-shape on probability
scale although the curve is not apparent
Linear relationship in logit space
31LogR binary predictor - summary
- The same maths/assumptions underlie the models
with a binary predictor - Estimation is simpler can be done from crosstab
rather than needing ML - Regression estimates relate to linear
relationship on logit scale
32Multinomial Logistic Regression
33Multinomial Logistic Regression
- Typically used for non-ordinal (nominal) outcomes
- Can be used for ordered data (some information is
ignored) - 3 outcome levels
- Adding another level adds another set of
parameters so more than 4 or 5 levels can be
unwieldy
34Multinomial Logistic Regression
where c0 a0 0
Here the probabilities are obtained by a
divide-by-total procedure
35Examples
- Outcome head-circumference
- 4 roughly equal groups (quartiles)
- Ordering will be ignored
- headcirc4 Freq. Percent
- ---------------------------------------
- lt 49cm 2,574 24.4
- 49.150.7cm 2,655 25.2
- 50.851.9cm 2,260 21.4
- 52 cm 3,060 29.0
- ---------------------------------------
- Total 10,549 100.00
- Exposure 1 birthweight of 8lb or more
- Exposure 2 standardized birthweight
36Exposure 1 bwt gt 8lb
- 32 of the sample had a birthweight of 8lb
- Does being 8lb at birth increase the chance of
you being born with a larger head - Unlike the logistic model we are concerned with
three probabilities - P(headcirc 49.1 50.7cm)
- P(headcirc 50.8 51.9cm)
- P(headcirc 52cm)
- Each is referenced against the negative
response i.e. that headcirc lt 49cm
37Exposure 1 bwt gt 8lb
- . mlogit headcirc4 bwt_8lb, baseoutcome(0)
- Multinomial logistic regression
- --------------------------------------------------
------------ - headcirc4 Coef. SE z Pgtz
95 CI - -------------------------------------------------
------------ - 1
- bwt_8lb 1.56 .135 11.53 0.000
1.30 1.83 - _cons -.07 .029 -2.30 0.022
-0.12 -0.01 - -------------------------------------------------
------------ - 2
- bwt_8lb 3.09 .129 23.98 0.000
2.84 3.34 - _cons -.58 .034 -17.33 0.000
-0.65 -0.52 - -------------------------------------------------
------------ - 3
- bwt_8lb 4.39 .127 34.43 0.000
4.14 4.64 - _cons -.99 .039 -25.56 0.000
-1.06 -0.92 - --------------------------------------------------
------------ - (headcirc40 is the base outcome)
38Exposure 1 bwt gt 8lb
- . mlogit headcirc4 bwt_8lb, baseoutcome(0)
- Multinomial logistic regression
- ---------------------------------
- headcirc4 Coef. (SE)
- --------------------------------
- 1
- bwt_8lb 1.56 (.135)
- _cons -.07 (.029)
- --------------------------------
- 2
- bwt_8lb 3.09 (.129)
- _cons -.58 (.034)
- --------------------------------
- 3
- bwt_8lb 4.39 (.127)
- _cons -.99 (.039)
- ---------------------------------
- (headcirc40 is the base outcome)
Logistic regression ------------------------------
---- head_1 Coef. Std.
Err. --------------------------------- bwt_8lb
1.56099 .1353772 _cons -.0664822
.0289287 ---------------------------------- Logis
tic regression ----------------------------------
head_2 Coef. Std. Err. ----------------
----------------- bwt_8lb 3.088329
.1287576 _cons -.5822197
.0335953 ---------------------------------- Logis
tic regression ----------------------------------
head_3 Coef. Std. Err. ----------------
----------------- bwt_8lb 4.389338
.127473 _cons -.9862376 .0385892 ----------
------------------------
39Exposure 1 bwt gt 8lb
- . mlogit headcirc4 bwt_8lb, baseoutcome(0)
- Multinomial logistic regression
- ---------------------------------
- headcirc4 Coef. (SE)
- --------------------------------
- 1
- bwt_8lb 1.56 (.135)
- _cons -.07 (.029)
- --------------------------------
- 2
- bwt_8lb 3.09 (.129)
- _cons -.58 (.034)
- --------------------------------
- 3
- bwt_8lb 4.39 (.127)
- _cons -.99 (.039)
- ---------------------------------
- (headcirc40 is the base outcome)
Logistic regression ------------------------------
---- head_1 Coef. Std.
Err. --------------------------------- bwt_8lb
1.56099 .1353772 _cons -.0664822
.0289287 ---------------------------------- Logis
tic regression ----------------------------------
head_2 Coef. Std. Err. ----------------
----------------- bwt_8lb 3.088329
.1287576 _cons -.5822197
.0335953 ---------------------------------- Logis
tic regression ----------------------------------
head_3 Coef. Std. Err. ----------------
----------------- bwt_8lb 4.389338
.127473 _cons -.9862376 .0385892 ----------
------------------------
40Exposure 1 bwt gt 8lb
- For a categorical exposure, a multinomial
logistic model fitted over 4 outcome levels gives
the same estimates as 3 logistic models, i.e. - Logit(0v1)
- Multinomial(0v1,0v2,0v3) Logit(0v2)
- Logit(0v3)
- In this instance, the single model is merely more
convenient and allows the testing of equality
constraints
41Exposure 2 Continuous bwt
- Using standardized birthweight we are interesting
in how the probability of having a larger head,
i.e. - P(headcirc 49.1 50.7cm)
- P(headcirc 50.8 51.9cm)
- P(headcirc 52cm)
- increases as birthweight increases
- As with the binary logistic models, estimates
will reflect - A change in log-odds per SD change in birthweight
- The gradient or slope when in the logit scale
42Exposure 2 Continuous bwt
- mlogit headcirc4 bwt_z, baseoutcome(0)
- Multinomial logistic regression
- --------------------------------------------------
------------ - headcirc4 Coef. SE z Pgtz
95 CI - -------------------------------------------------
------------ - 1
- bwt_z 2.10 .063 33.11 0.000
1.97 2.22 - _cons 1.06 .044 23.85 0.000
0.97 1.14 - -------------------------------------------------
------------ - 2
- bwt_z 3.52 .078 44.89 0.000
3.37 3.68 - _cons 0.78 .046 16.95 0.000
0.69 0.87 - -------------------------------------------------
------------ - 3
- bwt_z 4.88 .086 56.90 0.000
4.72 5.05 - _cons 0.33 .051 6.51 0.000
0.23 0.43 - --------------------------------------------------
------------ - (headcirc40 is the base outcome)
43Exposure 2 Continuous bwt
Logistic regression ------------------------------
------- head_1 Coef. Std.
Err. ------------------------------------ bwt_z
2.093789 .0650987 _cons 1.058445
.0447811 ------------------------------------- Lo
gistic regression --------------------------------
----- head_2 Coef. Std.
Err. ------------------------------------ bwt_z
3.355041 .0959539 _cons .6853272
.0464858 ------------------------------------- Lo
gistic regression --------------------------------
----- head_3 Coef. Std.
Err. ------------------------------------ bwt_z
3.823597 .1065283 _cons .3129028
.0492469 -------------------------------------
- Multinomial logistic regression
- ------------------------------
- headcirc4 Coef. (SE)
- -----------------------------
- 1
- bwt_z 2.10 (.063)
- _cons 1.06 (.044)
- -----------------------------
- 2
- bwt_z 3.52 (.078)
- _cons 0.78 (.046)
- -----------------------------
- 3
- bwt_z 4.88 (.086)
- _cons 0.33 (.051)
- ------------------------------
- (headcirc40 is the base outcome)
No longer identical
44Exposure 2 Continuous bwt
Outcome level 2 49.1 50.7 Intercept
1.06 Slope 2.10 Shallowest
Outcome level 3 50.8 51.9 Intercept
0.78 Slope 3.52
Outcome level 4 52.0 Intercept
0.33 Slope 4.88 Steepest Risk of being in
outcome level 4 increases most sharply as bwt
increases
45Can plot probabilities for all 4 levels
46Or altogether on one graph.
47Or altogether on one graph.
48Ordinal Logistic Models
49Ordinal Logistic Models
- When applicable, it is useful to favour ordinal
models over multinomial models - If outcome levels are increasing, e.g. in
severity of a condition or agreement with a
statement, we expect the model parameters to
behave in a certain way - The typical approach is to fit ordinal models
with constraints resulting in greater parsimony
(less parameters)
50Contrasting among response categories - some
alternative models
For a 4-level outcome there are three comparisons
to be made Model 1 that used in the
multinomial logistic model Model 2 used with
the proportional-odds ordinal model Model 3
adjacent category model
51Proportional odds model
- For an ordinal outcome, all three models shown on
the previous slide could be fitted. - Which one is chosen will depend on the type of
data being analysed, and the assumptions you wish
to make - POM is very popular in the literature (thanks to
SPSS) - Consists of model 2 applied with a parameter
constraint
52Proportional odds model
Alternative but equivalent parameterizations are
sometimes used
- The alphas do not have a subscript, hence the
proportional - odds assumption, AKA equal slopes
53Proportional odds model
- As we are modelling cumulative probabilities, the
probability of a specific response category
occurring must be obtained by subtraction
54E.g. for 3-category ordinal 0,1,2
55Exposure continuous birthweight
- . gologit2 headcirc4 bwt_z, npl
- Generalized Ordered Logit Estimates
- -------------------------------
- headcirc4 Coef. (SE)
- ------------------------------
- 0
- bwt_z 2.79 (.059)
- _cons 1.90 (.040)
- ------------------------------
- 1
- bwt_z 2.61 (.049)
- _cons -0.13 (.026)
- ------------------------------
- 2
- bwt_z 2.23 (.048)
- _cons -1.55 (.034)
- -------------------------------
Unconstrained model
WARNING! 8 in-sample cases have an outcome with a
predicted probability that is less than 0. See
the gologit2 help section on Warning Messages for
more information.
56- . gologit2 headcirc4 bwt_z if kz030gt1.25, npl
- Generalized Ordered Logit Estimates
Number of obs 10422 -
LR chi2(3) 7981.91 -
Prob gt chi2 0.0000 - Log likelihood -10396.564
Pseudo R2 0.2774 - --------------------------------------------------
---------------------------- - headcirc4 Coef. Std. Err. z
Pgtz 95 Conf. Interval - -------------------------------------------------
---------------------------- - 0
- bwt_z 2.785725 .0585952 47.54
0.000 2.67088 2.900569 - _cons 1.904522 .0395861 48.11
0.000 1.826935 1.982109 - -------------------------------------------------
---------------------------- - 1
- bwt_z 2.60551 .0494048 52.74
0.000 2.508678 2.702341 - _cons -.1269783 .0260562 -4.87
0.000 -.1780475 -.0759092 - -------------------------------------------------
---------------------------- - 2
57Exposure continuous birthweight
- . gologit2 headcirc4 bwt_z, pl
- Generalized Ordered Logit Estimates
- -------------------------------
- headcirc4 Coef. (SE)
- ------------------------------
- 0
- bwt_z 2.53 (.036)
- _cons 1.78 (.031)
- ------------------------------
- 1
- bwt_z 2.53 (.036)
- _cons -0.17 (.025)
- ------------------------------
- 2
- bwt_z 2.53 (.036)
- _cons -1.70 (.030)
- -------------------------------
Constrained model
58Exposure continuous birthweight
- Equality constraint has brought us 2 d.f.
- With more covariates (or more outcome levels) the
savings could be considerable - Model test
- . gologit2 headcirc4 bwt_z, npl
store(unconstrained) - . gologit2 headcirc4 bwt_z, pl store(constrained)
- . lrtest constrained unconstrained
- Likelihood-ratio test LR
chi2(2) 69.78 - (Assumption constrained nested in unconstrained)
- Prob gt
chi2 0.0000
59Exposure continuous birthweight
Constrained - Proportional odds (equal slopes)
Unconstrained
60Introduce a new model
Proportional odds model
Adjacent category model
61Adjacent-category model
- Adjacent category model is a nominal response
- Each category in turn is compared to its nearest
neighbour - Within each comparison, nothing is said about the
other categories unless model constraints are
imposed - Potential for testing the ordinal nature of the
item as we will see later
623-category adjacent-category model
Consider a categorical outcome with 3 levels
0,1,2
63We can rearrange this to give (us a headache)
64And?
- Notice
- The 3 denominators are the same
- Each response category probability can be written
DIRECTly as ratio of sums of exponents - Also known as a divide by total method
- This is contrary to POM which was an INDIRECT or
difference method since probabilities obtained
through subtraction
65Summary so far
- Aim of logistic regression is to model non-linear
probabilistic relationship between explanatory
variables and a categorical outcome - The logit form of the regression is assumed
linear in its regression terms - Can be classified as a generalized linear model
66Summary so far
- For polytomous outcomes, J outcome levels leads
to J-1 regression analyses - Appropriate (ordinal) data gives the potential
for parsimony through constraints such as
proportional odds
67Worked example
- Outcome
- 4-level categorical head circumference
- Exposure
- Standardized birthweight
- Aim
- Fit the equivalent to Statas -mlogit- and
-gologit2- functions in R and compare with
adjacent category model
68Ingredients
- one dataset data_for_R2.dta
- one R-script bwt headcirc for R.R
- one copy of R (latest version 2.9.2)
- R packages
- Foreign (to load dataset)
- VGAM (to run models)
69R Multinomial / adjacent category models
-
- multinomial logit model - cts covariate
-
- fit_multinom vglm(headc4 bwtz,
multinomial(refLevel1)) - constraints(fit_multinom)
- coef(fit_multinom, matrixTRUE)
- Summary(fit_multinom)
- adjacent categories logit model - cts covariate
- fit_adjcat vglm(headc4 bwtz, acat)
- constraints(fit_adjcat)
- coef(fit_adjcat, matrixTRUE)
- summary(fit_adjcat)
70R Cumulative logistic model
-
- cumulative model - cts covariate
-
- constrained (parallel) model
-
- fit_pom vglm(headc4 bwtz, cumulative(parallel
TRUE, reverseTRUE)) - constraints(fit_pom)
- coef(fit_pom, matrixTRUE)
- unconstrained (non-parallel) model
-
- fit_nonpom vglm(headc4 bwtz,
cumulative(parallelFALSE, reverseTRUE)) - constraints(fit_nonpom)
- coef(fit_nonpom, matrixTRUE)
- Check the proportional odds assumption with a
LRT
- 1 - pchisq(2(logLik(fit_nonpom)-logLik(fit_pom)),
dflength(coef(fit_nonpom))-length(coef(fit_pom))
)
71Non-POM in VGAM
- VGAM procedure struggles with unequal slopes when
continuous predictor strongly related to outcome - This occurred in this example and also in the
exercises - We are using R as a useful teaching environment,
but it is free, and not everything is 100
reliable
72summary(fit_multinom)
- Call
- vglm(formula headc4 bwtz, family
multinomial(refLevel 1)) - Coefficients
- Value Std. Error t value
- (Intercept)1 1.05708 0.044320 23.8514
- (Intercept)2 0.78024 0.046040 16.9471
- (Intercept)3 0.33206 0.050998 6.5113
- bwtz1 2.09505 0.063267 33.1146
- bwtz2 3.52171 0.078459 44.8858
- bwtz3 4.88490 0.085853 56.8987
- Number of linear predictors 3
- Names of linear predictors log(mu,2/mu,1),
log(mu,3/mu,1), log(mu,4/mu,1) - Dispersion Parameter for multinomial family 1
- Residual Deviance 20946.78 on 31290 degrees of
freedom - Log-likelihood -10473.39 on 31290 degrees of
freedom
73summary(fit_adjcat)
- Call
- vglm(formula headc4 bwtz, family acat)
- Coefficients
- Value Std. Error t value
- (Intercept)1 1.05708 0.044320 23.8514
- (Intercept)2 -0.27685 0.031349 -8.8312
- (Intercept)3 -0.44817 0.040190 -11.1512
- bwtz1 2.09505 0.063267 33.1146
- bwtz2 1.42666 0.057806 24.6800
- bwtz3 1.36319 0.052771 25.8323
- Number of linear predictors 3
- Names of linear predictors
- log(PY2/PY1), log(PY3/PY2),
log(PY4/PY3) - Dispersion Parameter for acat family 1
- Residual Deviance 20946.78 on 31290 degrees of
freedom
74summary(fit_pom)
- Call
- vglm(formula headc4 bwtz, family
cumulative(parallel TRUE, - reverse TRUE))
- Pearson Residuals
- Min 1Q Median
3Q Max - logit(PYgt2) -20.3575 0.013626 0.138778
0.46234 8.1378 - logit(PYgt3) -9.7316 -0.461336 0.030467
0.44740 12.7044 - logit(PYgt4) -6.0701 -0.374240 -0.134896
0.30254 14.7435 - Coefficients
- Value Std. Error t value
- (Intercept)1 1.78467 0.031368 56.8950
- (Intercept)2 -0.17112 0.025049 -6.8316
- (Intercept)3 -1.70386 0.030295 -56.2419
- bwtz 2.52516 0.036331 69.5052
- Number of linear predictors 3
- Names of linear predictors logit(PYgt2),
logit(PYgt3), logit(PYgt4)
75summary(fit_nonpom)
- Call
- vglm(formula headc4 bwtz, family
cumulative(parallel FALSE, - reverse TRUE), maxit 100)
- Pearson Residuals
- Min 1Q Median
3Q Max - logit(PYgt2) -26.8061 0.010352 0.127186
0.39716 10.639 - logit(PYgt3) -10.2091 -0.488329 0.031261
0.44992 15.139 - logit(PYgt4) -4.8869 -0.375265 -0.151709
0.36328 10.577 - Coefficients
- Value Std. Error t value
- (Intercept)1 1.90529 0.0392664 48.5222
- (Intercept)2 -0.12164 0.0238242 -5.1056
- (Intercept)3 -1.54436 0.0249593 -61.8751
- bwtz1 2.77653 0.0566026 49.0531
- bwtz2 2.57170 0.0085618 300.3694
- bwtz3 2.21528 0.0048085 460.7037
76Summary of estimates
77Plots for multinomial model
78Plots for adjacent category model
LOGITS have different interpretation compared
with last model
79Plots for cumulative models POM
80OCCs for POM
81Plots for cumulative models non-POM
82OCCs for non-POM
83Some decision about which is best?
- Seen an exhausting but non-exhaustive range of
ordinal models - The decision regarding which is best is not
really a statistical one - One should always consider a variety of models to
assess whether ones conclusions are affected by a
(perhaps arbitrary) model choice - Here practical differences are likely to be
minor, at least away from the distribution tails
84Now for some exercises
85Exercise 1 binary predictor
- Categorical outcome and binary predictor
- Using a simple crosstab, estimate log-odds
estimates for - Multinomial logistic
- Un-equal slopes cumulative logistic
- Adjacent category logistic
-
- Verify the results by fitting the equivalent
models in R using -VGAM-
86Exercise 2 continuous predictor
- Categorical outcome and continuous predictor
- Using the -VGAM- function estimate the following
models - Multinomial logistic
- Un-equal slopes cumulative logistic
- Equal slopes cumulative logistic (POM)
- Adjacent category logistic
-
- Examine the predicted probabilities/logits
graphically for each model
87Data for the exercise bmi11to14data.dta-
- Binary predictor (bmi7_med)
- BMI median (15.6) at age 7
- Continuous predictor (bmi7/bmi7z)
- cts BMI at age 7
- 4-level categorical outcome (bmi14_g4)
- BMI at age 14
- Categorised min/200 20/221 22/242 24/max3
88Exercise 1
- Crosstab of bmi7gt20 and bmi14_g4
- bmi14_g4
- bmi7_med 0 1 2
3 Total - -------------------------------------------------
---------------- - 0 2,079 313 71
37 2,500 - 83.2 12.5 2.8
1.5 - -------------------------------------------------
---------------- - 1 707 690 464
639 2,500 - 28.3 27.6 18.6
25.6 - -------------------------------------------------
---------------- - Total 2,786 1,003 535
676 5,000
89Optional homework
- Refit these models in a more familiar stats
package e.g. - SPSS nomreg / PLUM
- (http//www.norusis.com/pdf/ASPC_v13.pdf)
- Stata mlogit / gologit2
- http//www.ats.ucla.edu/stat/Stata/dae/ologit.htm
- SAS proc logistic
- http//www.ats.ucla.edu/stat/sas/dae/ologit.htm
- ACAT not possible in SPSS, nor Stata (except
possibly in GLLAMM)
90http//cran.r-project.org/
91(No Transcript)
92(No Transcript)