Title: Migration Deconvolution
1(No Transcript)
2Overview of Seismic Imaging
- Jerry Schuster
- Geology Geophysics Dept.
- Univ. of Utah
3Outline
4ZO Seismic Section
Depth
Time
50 km 0.1 km
6Acoustic Forward Problem
Depth
7Goal Compute ZO Seismic Section
8Acoustic Forward Problem
Depth
9Normal Moveout Correction
Depth
10Stack
Depth
11Stacked Seismic Section
Depth
12Outline
13What is the Problem?
Events Can Originate Updip
V/2
DVT/2
Depth
Time
14What is another Problem?
Events Originate Pt. Diffractors
Depth
Time
150 km 30 m
0 m 30 m
16ZO Data
0 km 3 km
0 km 7 km
17Seismic Inverse Problem
Given d Lo
Find o(x,y,z)
18Review
19Outline
20.1 1 10 100
1000
l
(km)
21(No Transcript)
22Seismic Data Acquisition Parameters
23(No Transcript)
24(No Transcript)
25Judge Seismic Section
0 m 10 m
0 m
100 m
26(No Transcript)
27N-S Vertical Section Tomograms
1.5 km/s 0 km/s
0 m 3 m
0 m 3m
1.5 km/s 0 km/s
0 m 3 m
1.5 km/s 0 km/s
0 m
12 m
28.1 1 10 100
1000
l
(km)
29(No Transcript)
30(No Transcript)
31Marine Experiment
32.1 1 10 100
1000
l
(km)
331Hz Global Tomography
12000
0
(km)
6000
0
Mantle
(km/s)
13.72
10.29
6000
Core
6.858
3.429
0
12000
(km)
34Alaska
UU Strong Motion Network
35Utah Stations
0
Distance (km)
0 s 1.6 s
150
0 50 km
0 km
200 km
36Alaska Earthquake
370 km
700 km
.1 1 10 100
1000
l
(km)
38Summary
39NutsBolts of Migration
- Jerry Schuster
- Geology Geophysics Dept.
- Univ. of Utah
40Outline
41Born Modeling
x
42Born Modeling
d(xx)
o(x)
x
x
x
Scatterer
43Time-Domain Diffraction Stack Modeling
?
?
?
?
-
-
i
i
xx
e
xx
e
d(x)
o(x)
A(x,x)
A(x,x)
44Born Modeling
..
d(x,t)
d( t-? - ? )
o(x)
xx
xx
A(x,x)
A(x,x)
?/c
T
(x ,0)
(x ,0)
s
g
(x,z)
45Born Modeling
(x ,0)
(x ,0)
s
g
(x,z)
46Born Modeling
..
d(x,t)
d( t-? - ? )
o(x)
xx
xx
A(x,x)
A(x,x)
T
(x ,0)
(x ,0)
s
g
(x,z)
47Outline
48Fresnel Zone
z
49 ZO Migration Smear Reflections along Fat Circles
50 ZO Migration Smear Reflections along Fat Circles
51 ZO Migration Smear Reflections along Circles
52 ZO Migration Resolution Intersection of Fresnel
Zones
Vertical Res. Near-Offset Traces
53 ZO Migration Resolution Intersection of Fresnel
Zones
Horiz. Res. Far-Offset Traces
54 Why is Pt. Scatterer Response of Migration a
Blurred Version of Point?
550 km 3 km
0 km 7 km
56Conclusions
- Far-Offset Traces Better Hor. Res.
- Near-Offset Traces Better Vert. Res.
57Forward Modeling
e
W(? )
d(x)
A(x,x)
58Finite-Difference Stencil
59Outline
60Born Modeling
x
x
x
Scatterer
61115.
Diffraction Stack Migration Prestack
-
-
?
?
?
?
i
i
xx
e
xx
e
m(x)
d(x)
A(x,x)
A(x,x)
..
Narrow band case direct wave correlated with data
62116.
Prestack Migration Smears Reflections along Fat
Ellipses
?/c
T
x
g
(x,z)
Doughnut describes support of ellipse described
by with ? between T and T
?/c
63SUMMARY
117.
1. Prestack DS Migration Formula
m(x)
for just one trace! N shot gathers with N traces
per shot require N2 such sumnmations
2. High Frequency Approximation (i.e
c(x) variations gt 3? )
3. Approximates Kinematics of Data, but not
Dynamics
4. Prestack N times slower than Poststack,
no 1-D assumption, velocity sensitive, better
dynamic range. Here N shot gathers
64118.
Diffraction Stack Migration Prestack
-
-
?
?
?
?
i
i
xx
e
xx
e
d(x)
d(x)
A(x,x)
A(x,x)
65Ray vs Wave Traveltimes
( )
d
dr
t (s,g)
D
s
66Ray vs Wave Traveltimes
( )
d
dr
t (s,g)
D
s
67Migration Deconvolution
68Outline
1. Seismic Lens
69Why does a Telescope Lens act as a Migration
Operator?
Lo
o
o
Lo
70Why Similarity?
71Seismic Section
Depth
Time
72Outline
73Seismic Section
74What is the Solution?
Smear Events along Circles.
V/2
Depth
Time
75Seismic Problem
Given d Lo
Find o(x,y,z)
Lo
76Smear Events along Circles.
V/2
Depth
Time
77Seismic Experiment
78Summary
Exploding Reflector d L o
Relocates events to correct location
79Outline
80Why Similarity?
81Why does a Telescope Lens act as a Migration
Operator?
Lo
o
o
Lo
82Outline
83Hubble Telescope Large Magellanic Cloud
o
84Broken Lens
85Seismic Telescope N. Sea
o
but dL o
86Numerical Tests
87Recording Geometry
5 X 5 Sources 21 X 21 Receivers
Wavelet frequency 50 Hz
(0, 1 km)
(0, 0)
(1 km,1 km)
(1 km, 0)
A river channel
88Depth Slices of Point Scatterers
89Meandering River Model
90Kirchhoff Migration Image
91MD Image
92Numerical Tests
- 2-D SEG/EAGE overthrust model
93Velocity Model
94Comparison of KM and MD
KM
- Poststack Migration Image
15 km
0 km
95Comparison of KM and MD
15 km
0 km
KM
- Poststack Migration Image of Half Sampled Data
0 km
MD
4 km
- Deconvolved Migration Image
96Numerical Tests
- 2-D SEG/EAGE overthrust model
- 2-D Mobil marine data from the North Sea
97Velocity Model
2500
Velocity (m/s)
1500
98Time Migration Image
99Migration Deconvolution Image
X (km)
0
25
100Migration Deconvolution Image
X (km)
0
25
101Numerical Tests
- 2-D SEG/EAGE overthrust model
- 2-D Mobil marine data from the North Sea
- 3-D SEG/EAGE Salt Model
102Inline Velocity Model
Offset (km)
0
9.2
0
Depth (km)
3.8
103Comparison of Migration and MD Image
Y (km)
Y (km)
4
6
8
4
6
8
0
0
1
1
Depth (km)
Depth (km)
2
2
3
3
4
4
Migration Crossline Section
MD Crossline Section
104Depth (km)
KM Crossline (X,97) Section
MD Crossline (X,97) Section
105Numerical Tests
- 2-D SEG/EAGE overthrust model
- 2-D Mobil marine data from the North Sea
- 3-D SEG/EAGE Salt Model
- 3-D North Sea Data
106Comparison of Prestack Migration and MD Images
- Prestack Kirchhoff Migration Image of
- a North Sea Data Set
107Comparison of Poststack MD Depth Slices
108Conclusions
109Outline
110Fourier Optics
d(x,0 )
Image is Fourier Transform of Aperture Lens
m
111Image is Fourier Transform of Lens
Aperture?
1. Rapid Lens Design
Point Source
Point Spread Function
112Test 1 Zero-offset Survey
Lx 1667 m
dy80 m
Ly 1667 m
dx80 m
point scatterer z0 6667 m
33 m
113Diffraction Stack Image
5 CPU Hours
1
Migration Magnitude
0
2667
2667
Y (m)
X (m)
0
0
114Seismic Array Theorem Image
6 CPU Seconds
1
Migration Magnitude
0
2667
2667
Y (m)
X (m)
0
0
115ARCOs Land Surveys
Source Geometry
Receiver Geometry
2333
I
0
0
2333
II
III
116Survey Parameters
2333 X 2333 m Rectangular Area
2
dxs dys dxg dyg of
Traces I 13 m 80 m 80 m 13 m
27878400 II 13 m 40 m 40 m 13 m
29160000 III 7 m 40 m 40 m 7 m
29160000
1170
I
2333
2333
2333
Y (m)
0
0
II
II
2333
2333
2333
Y (m)
X (m)
0
0
III
III
Y (m)
2333
2333
2333
Y (m)
X (m)
0
X (m)
118Meandering River Channel Model
Depth 5000 m
119Migration Image
After 180 Iterations Alias Energy 0.00052
Final Survey Alias Energy 0.00051
120Conclusions
121Test 2 Source-dependent Receiver Survey
Lsx
Lgx
dys
dgy
Lgy
Lsy
dgx
dxs
122KM Image with Initial Velocity
0
18 km
0
Depth (km)
1.5
KMVA Velocity Changes in the 1st Iteration
0
50
Depth (km)
(m /s)
0
1.5
123Why does a Telescope Lens act as a Migration
Operator?
Star
124SEISMIC ARRAY THEOREM AND OPTIMAL SURVEY DESIGN
125Square Root Optics
h(x',y')
126 127Square Root Optics
h(x',y')
Image is Fourier Transform of Aperture Lens
128Seismic Array Theorem
ò
ò
b(x',y')
1293D Prestack Point Migration Scatterer
Response
i(k x' k y' k x' k y')
ò
ò
e
x
y
x
y
b(x',y',x',y')
y
1304-D Seismic Array Theorem
Source Grid
Geophone Grid
Analytical
Analytical
SINCg(X ) SINCg(Y )
SINCg(X ) SINCg(Y )
g
s
s
g
Migrated Image
131 Outline
- Motivation
- Seismic Array Theorem
- Numerical Verification
- Survey Design Trial and Error
- Survey Design Optimization
- Conclusions
132D.S. Vs. SAT. Image
1
Diffraction Stack Image
Seismic Array Theorem Image
Migration Magnitude
0
X (m)
0
3333
133SAT Image Freq. 100 Hz
134Alias Energy in Migration Sections
Survey Alias Energy I 971 II
192 III 735
135Trial and Error W. Texas Survey
unit meter
dxs dys dxg dyg trace
Regular 1/4 Sampling Uniform 1/4
Sampling
440 110 73 440 1,298,517
440 110 293 440 333,564
193 193 193 193 1,309,499
277 277 277 277 317,057
136 Focusing Incident Light on an Image Plane
x
137m(r)
x
138Point Scatterer Response
Regular Survey Alias Energy 85
3333
Y (m)
0
X (m)
0
3333
Uniform Survey Alias Energy 454
3333
Y (m)
0
3333
0
X (m)
139Fourier Array Theorem
ò
ò
140Square Root Optics
Image is Fourier Transform of Aperture Lens
141Migration Noise Problems
- Aliasing
- Recording Footprint
- Limited Resolution
- Amplitude Distortion
0
Footprint
Amplitude distortion
Time (s)
2
Migration noise and artifacts
142Hubble Telescope Large Magellanic Cloud
r
143Solution Deconvolve the point scatterer response
from the migrated image
Reason
Migrated Section
Data
144Migration Deconvolution
145Seismic Section
Depth Resolution
Horiz. Resolution gt
Depth
Time
DepthvelT
146Outline
- Reflection Imaging Principles
- Case History 3D Seismic Potash
- Case History 2D Tomography
147Potash Geology(Pruegger Nemeth)
- Sakatchewn Province 12 km/12 km Potash mine 1
km depth
Potash
Salt
Karst
Limestone
148Potash Geology
- Sakatchewn Province 12 km/12 km Potash mine 1
km depth
Potash
Salt
Karst
Limestone
149What is the Problem?
Events Originate Updip
V/2
Depth
Time
150Outline
- Reflection Imaging Principles
- Case History 3D Seismic Potash
- Case History 2D Tomography
1512D vs 3D
Top View
152Seismic Problem
Given d Lo
153Seismic Problem
Given d Lo
154Seismic Problem
Given d Lo
Find o(x,y,z)
2
Soln min Lo-d
PSF decon
Lo
155Outline
1. Seismic Lens
156Why does a Telescope Lens act as a Migration
Operator?
r
Star
157Light Incident on an Aperture
Lo d
Integral Equation
x
x
158Lens Diverg. Waves Conv. Waves
ò
ò
g(rr)
g(rr)
159Lens Diverg. Waves Conv. Waves
160Seismic Problem
Given d Lo
161l
Wave Theories vs
/D
Ray Theory
Greens Thm
Mie Theory
D
l
162What is the Problem?
V/2
DVT/2
Depth
Time
163What is the Problem?
Events Can Originate Updip
V/2
DVT/2
Depth
Time
164l
Wave Theories vs
/D
Ray Theory
Greens Thm
Mie Theory
D
l
165Seismic Problem
Given d Lo
Find o(x,y,z)
2
Soln min Lo-d
PSF decon
Lo
1662-D Seismic Survey
30 m
6 km
1673-D Seismic Survey
30 m
6 km
168.1 1 10 100
1000
l
(km)
169Recall Huygens Principle Every Pt. On Wavefront
2nd Source
ZO Seismic Section
170Recall Greens Function Pt. Impulse response of
medium
Depth
Time
171Born Approximation
172SUMMARY
22.
1. Exploding Reflector Modeling Diffraction
Stack Modeling
R(x)
A(x,x)
A(x,x)
Sum over reflectors
2. High Frequency Approximation (i.e c(x)
variations gt 3? )
3. Approximates Kinematics of Data, but not
Dynamics
173Problem We dont know c(x,y,z), only a smooth
estimate.
174Depth
Time
175Recall Huygens Principle Every Pt. On Wavefront
2nd Source
Depth
Time
176Exploding Reflector ½ Velocity
V/2
Depth
Time
177Born Forward Modeling
d(x)
g(xx)
178Review
179Acoustic ZO Migration
Depth
180Forward Modeling (d Lo)
d(x)
g(xx)
o(x)
..
181 ZO Migration Smear Reflections along Fat Circles
Where did reflections come from?
182 ZO Migration Smear Reflections along Fat Circles
183 ZO Migration Smear Reflections along Circles