Value Compression to Reduce Power in Data Caches - PowerPoint PPT Presentation

About This Presentation
Title:

Value Compression to Reduce Power in Data Caches

Description:

... Polit cnica de Catalunya Barcelona, Spain {antonio,jordit}_at_ac. ... Free bit map. 13 bits. 4x 22bits - Compressed value. or - Pointer to. uncompressed. value ... – PowerPoint PPT presentation

Number of Views:19
Avg rating:3.0/5.0
Slides: 24
Provided by: tonic4
Category:

less

Transcript and Presenter's Notes

Title: Value Compression to Reduce Power in Data Caches


1
Value Compression to Reduce Power in Data Caches
Europar03, Klagenfurt - August 26-29, 2003
  • Carles Aliagas, Carlos Molina and Montse García
  • Universitat Rovira i Virgili Tarragona,
    Spaincaliagas, cmolina, mgarciaf_at_etse.urv.es
  • Antonio González and Jordi Tubella
  • Universitat Politècnica de Catalunya Barcelona,
    Spain antonio,jordit_at_ac.upc.es

2
Motivation
  • Caches spend close to 50 of total die area
  • Caches may be responsible for 10 to 20 of total
    power dissipated by a processor

3
Cache Storage
Cache access
TAG
DATA
address
Cache Line
TAG Comparison
HIT
Value
4
Structures Accessed
Cache access
TAG
DATA
address
Cache Line
TAG Comparison
HIT
Value
5
Useful Information
Cache access
TAG
DATA
address
Cache Line
TAG Comparison
HIT
Value
6
Compressed Data
30 of total capacity
TAG

Compressed Data
address
Cache Line
TAG Comparison
Value decompression
HIT
Value
7
Objective
  • Reduction of
  • Die area.
  • Energy consumption.
  • Maintaining
  • Miss ratio.
  • Latency.

8
Compression Types
  • Integer compression
  • The value is an integer.
  • The compression applied is
  • Sign extension.
  • 0 bit elimination.
  • Address compression
  • The value is a pointer.
  • From pointer to pointer only few bits are
    different.
  • Address are
  • Data pointers, code pointers and stack pointers
  • Try to recognize a common pattern.
  • The patterns are stored on a common structure.
  • Only the different bits are stored in cache.

9
Integer Compression
  • Six different compression forms, depending on
    significant bits position.
  • Two 32-bit words or one 64-bit word

T1
0
0
T2
0 0
0 0
T3
0 0
T4
T5
0 0
0 0
T6
10
Address Compression
  • One compression type
  • Pointer pattern variable bits.
  • Several patterns stored in a separate table
    Address Table (AT)
  • Only 8 patterns represents 83.

0 0
TA
Pattern
0
Pattern-1
Pattern-2
Pattern-3
Pattern-k
11
Data Value Compression
  • Close to 70 of all data stored in a 16KB data
    cache can be compressed from 64 to 22 bits.

Percentage of each type of compression applied
12
Simulation Enviroment
  • Simulators
  • Cacti tool version 3.0 (Static Analysis)
  • Alpha version of SimpleScalar 3.0 (Dynamic
    Analysis)
  • Benchmarks
  • Spec2000
  • Maximum Optimization Level
  • DEC C F77 compilers with -non_shared -O5
  • Statistics Collected for 1 billion instructions
  • Skipping initializations

13
The Pattern Cache
Address
  • - Integer type
  • compression
  • Address pattern
  • index
  • - Non compressed

- Compressed value or - Pointer to
uncompressed value
LT
4 bytes
Tag
Direct
VT
Pointer
access
Location
Address Pattern
AT
Word 8 bytes
13 bits
4x 22bits
AB
Free bit map
Tag
Line 32 bytes
14
Cache Behavior
Data access
93
7
HIT
MISS
Integer compression
Address compression
Non compressed
Integer comp.
Address comp.
Non comp.

75
25
Next Level cache
70
23
Static analysis
Dynamic analysis
15
Static analysis
  • Base cache
  • Direct mapped 16KB, 32Bytes/line.
  • Pattern Cache
  • Same associative and number of lines. LT
  • Three configurations reducing the area of VT to
    40, 30 and 20 of the original data area.
  • AT 8 entries.
  • Assist Buffer
  • Full associative cache of 16 entries
  • Working as a Victim cache in the Base cache.

16
Die Area
17
Access Time
18
Energy Consumption
19
Dynamic Analysis
  • Energy consumption of 1st level cache plus 2on
    Level cache
  • EC (Hit DL1_EC) (Miss (2 DL1_EC
    DL2_EC))
  • 1st level cache 64KB to 4KB
  • 2on level cache 512KB

20
Energy Consumption (2)
21
Results
  • Caches ranging from 4KB to 64KB

22
Conclusions
  • High degree of value compression can be applied
    in data caches.
  • The compression allow to store the same
    information with less die area.
  • This involves an energy consumption reduction.
  • While maintaining the same access time.
  • With minor miss ratio increment.

23
Value Compression to Reduce Power in Data Caches
Europar03, Klagenfurt - August 26-29, 2003
  • Carles Aliagas, Carlos Molina and Montse García
  • Universitat Rovira i Virgili Tarragona,
    Spaincaliagas, cmolina, mgarciaf_at_etse.urv.es
  • Antonio González and Jordi Tubella
  • Universitat Politècnica de Catalunya Barcelona,
    Spain antonio,jordit_at_ac.upc.es
Write a Comment
User Comments (0)
About PowerShow.com