SDSS Cluster Abundances - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

SDSS Cluster Abundances

Description:

Steve Kent. Rita Kim. Tim Mcay. Erin Sheldon. Bob Nichol. Chris Miller. Tomo Goto. Neta Bahcall ... Steve Kent. Scott Dodelson. Josh Friemann. Tim Mckay. Erin ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 13
Provided by: ann165
Category:

less

Transcript and Presenter's Notes

Title: SDSS Cluster Abundances


1
SDSS Cluster Abundances
Cluster Collaborators Steve Kent Rita Kim Tim
Mcay Erin Sheldon Bob Nichol Chris Miller Tomo
Goto Neta Bahcall Daniel Eisenstein Marc
Postman Cosmology Collaborators Martin
Makler Steve Kent Scott Dodelson Josh
Friemann Tim Mckay Erin Sheldon
  • Constraints on Cosmology
  • James Annis
  • Experimental Astrophysics/ Fermilab

2
(No Transcript)
3
The MaxBCG Cluster Finder
The Signal
4
z 0.13
z 0.06
z 0.20
Likelihood 1.9
Likelihood -7.8
Likelihood -8.4
N0
N19
N0
5
Cluster Photometric Redshifts
Photo-z
rms 0.019
Spectroscopic z
6
The Cluster Galaxy Number Function
7
Completeness
True N

Measured N
z
8
Scaling Mass with N
Velocity Dispersion Weak Lensing
s (km/s)
N
log s 0.53 log N 2.06 log s
0.70 log N 1.75
log M 1.5 log N log M
2.1 log N
9
Hubble Volume Simulations
10
Number Function Prediction Halo Occupation
Models
  • An intuitive framework with predictive power
    (Seljak 2000)
  • All matter is in the form of isolated haloes with
    mass M
  • Bright galaxy at halo center
  • Density profile given by NFW
  • Halo mass function given by Press-Schecter or
    variants.
  • The observed slope 1.8 power law galaxy
    correlation function is a generic prediction of
    these models, as long as
  • Observations suggest 0.5 lt b lt 0.8 (Sheth et al
    2000, Scoccimarro et al 2001, Berlind and
    Weinberg 2002)
  • Jenkins 2001 mass function

cosmology
power spectra
11
Parameters of Interest
Black line is a fiducial model. Red, orange,
green, blue vary the parameter of
interest. Dotted lines are a different redshift.
Om
s8
n
f?
12
(No Transcript)
13
(No Transcript)
14
Systematics
  • Possible systematic errors
  • Cosmological covariance
  • Incorporate in fisher matrix. Smaller than
    statistical errors
  • Selection function of cluster finding algorithm
  • Determine E/S0 k-correction. Effect small at z lt
    0.3.
  • Scatter in N(M)
  • Reverse Malmquist bias due to scatter in N(M)
  • Weak lensing bias
  • 20-30 in mass calibration
  • Jenkins mass function uncertainty
  • 20 in abundance
  • Details of conversion of weak lensing shear to
    M200
  • Cosmology dependence of cluster finding algorithm

15
Systematics
  • Serious systematic errors
  • Calibration of N(M)
  • Largest systematic uncertainty.
  • Changing scaling to higher mass increases Om,
    lower fv
  • Coalescence of potential clusters centers
  • Changes abundance and tilt
  • Preference for n0.93 in this data the result of
    differing coalescence methods between simulation
    and observations
  • Performing a simulation-like coalescence on the
    data causes a preference for n1.0. The best fit
    values there are then little changed, except for
    a lower fv
  • Changing either tilt or coalescence individually
    leads to relatively large changes in parameters.
  • Systematics Om ? .1, s8 ? .1, f? ? 0.1-0.2

16
s8
Om
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
fv
Om
21
Conclusions
  • The SDSS data allows constructions of cluster
    catalogs
  • Very complete to low masses
  • With redshifts
  • 0 lt z lt 0.5
  • Halo models provide framework for interpreting
    and predicting number functions
  • Weak lensing provides calibration of N(M)
  • Number Function M/L
  • Om 0.27 ? .07 ? .1 Om 0.18 ?
    0.08-0.07
  • s8 1.04 ? .11 ? .1 s8 1.04 ?
    0.3-0.2
  • f? 0.30 ? .08 ? 0.1-0.2

Conclusions
22
Using ¼ of the SDSS
  • 2000 sq-degrees of SDSS data now available (The
    DR1)
  • More clusters
  • Better weak lensing calibration
  • Consistency checks
  • Velocity dispersion calibration of N(M)
  • Direct power spectrum measurements
  • Systematic errors will dominate
  • Program to estimate each systematic
  • Analyze Hubble Volume simuations to check physics

23
Clusters as Cosmological Probes
Why would you want to?
  • In terms of being able to model objects ab initio
    clusters rank just below the CMB.
  • The formation of high mass halos is likely
    independent of the complex gas dynamics, star
    formation and feedback effects of galaxy
    formation instead only gravitational physics.
  • Analytical techniques
  • Press-Schecter follow the hierarchical structure
    formation of a gaussian density field in the
    linear perturbation limit. Unreasonably
    effective.
  • Gott-Gunn follow the hierarchical structure
    formation of a single cluster under spherical
    tophat collapse.
  • N-body techniques
  • The Virgo Consortium Hubble volume simulation
  • The Santa Barbra Cluster Comparison Project
  • Sensitive to Dark Matter and Dark Energy
  • Dark Energy
  • Supernova sensitivity through r(z)
  • Cluster sensitivity through r(z) and D(z), the
    growth function
  • Dark Matter
  • Cluster sensitivity again through r(z) and D(z),
    and P(k)

Application
Haimen, Mohr, and Holder (2001)
24
Parameter Estimation
Application
25
Cosmology
  • Constraints from 1/20th of the SDSS
  • Ellipse from abundances
  • Flattening from evolution

s8
Application
Om
26
Spatial Position
Signal Calibration
27
Cosmology
Application
28
(No Transcript)
29
Number Function Prediction
  • Elements
  • A mass function useful for any reasonable
    cosmology
  • The Jenkins mass function, derived from
    simulations
  • A halo model to predict N given M
  • Seljak 2000, Sheth et al 2000, Scoccimarro et al
    2001, Berlind and Weinberg 2002
  • Predict
  • weak lensing calibration of mass gives
Write a Comment
User Comments (0)
About PowerShow.com