Title: A Virtual Survey SYSTEM
1A Virtual Survey SYSTEM
- Astro-Wise
- NOVA/Kapteyn OA Capodimonte
- ESO Terapix US Munich/MPE
- National WFI datacenters NL-I-D-Fr/ESO
- EU FP5 RTD programme parallel to AVO
- 5 year programme -gt dec 2006
-
Edwin A. Valentijn
2Basic objectivesWide Field imaging EU
- Facilitate handling, calibration, quality
control, pipelining, user tuned research,
archiving, disseminating results - 100s Tbyte of image data and
- 10s Tbyte of catalogue data
- With production spread over EU
- What-ever gt object model / scalability
- Where-ever -gt federations, GRIDS
- Who-ever -gt Python as glue (GUIs)
(O)MegaCAM
3status
- VO conference 2002 - design
- Build information system - working
- Implemented, qualified
- WFI_at_2.2m, WFC_at_INT, MDM, OmegaCAM_at_ILT
- gtgtQualify with OmegaCAM_at_VST-2006
- gtgttune to run Public Surveys
- gtgtquality control
- gtgtOptimize federation/replication
4new paradigmtarget processing
to -hunting /full linking -data pulling -target
processing -raw data -archive -all in archive
-request driven
- from
- -waterfall/ multi-tier
- -data pushing
- -raw data processing
- -raw data delete
- -result -gtarchive
- -releases
- raw pixel data ? pipelines/cal files ? catalogues
- all integrated in one information system
- distributed services ?Virtual Survey Telescope
- processing GRID
- Storage GRID
- Methods/services GRID
5Astro-Wise VO Properties Benefits integrated
dynamic db
- on-the fly re-processing
- 5LS 5 Lines Script
- All bits are traced
- Administration for parallel processing
- compute GRID SETI_at_home
- Global solutions astrometry/photometry
- Buildin workflow
- Fully user tunable own provided script
- Context projects/surveys, instruments, mydb
- Publish directly in EURO-VO
6components
- Procedures Cal plan at telescope
- Data model -gt object model -gtdb
- Central db server/clients
- All I/O except images
- Meta data
- Source lists catalogues associate lists
- Links references joints
- Fileserver distributed- via db
- Python clients
- CVS distributed code base - opipe
7Astro-Wise Pipelines
8Target processing the make metaphor
- awegt targethotHotPixelMap.get(date'2003-02-14',
chip'A5382') - The processing chain is
- ReadNoise lt-- Bias lt-- HotPixels
- gt class HotPixelMap(ProcesTarget)
- gt gt def self.make()
- gt class ProcessTarget()
- gt gt def get(date, chip) if not
exist/up-to-date then make() - gt gt def exist() does the target
exist? - gt gt def uptodate() is each dependency up
to date? - Fully
recursive
9Intra-operability peer to peer
- code base docs CVS
- Db Advanced Replication evolving to streaming
WRITE
WRITE
10Contents of federation
- Raw data
- Observed images
- Ancillary information
- Calibration results
- Calibration files time stamped
- Reduced images
- Single observation
- Co added images
- Software
- Methods (pipelines) for processing calibration
- Configuration files
- Source lists catalogues
- Extracted source information
- Associated among different data objects
11Example 5LS
- Find ScienceFrames for a ccd named ccd53 and
filter - Awegt q (ReducedScienceFrame.chip.name 'ccd)
and (ReducedScienceFrame.filter 841) - From the query result, get the rms of the sky
in image - Awegt x k.imstat.stdev for k in q
- get the rms of the used Masterflat
- Awegt y k.flat.imstat.stdev for k in q
- Make a plot
- Awegt pylab.scatter(x,y)
12Astro-Wise PORTAL
13Web services- object viewer
14QC - calibration scientist monitoring
15QC - calibration scientist monitoring
16Web services- object maker
17VST - Virtual Survey Telescope
18Lofar
IBM- Blue Gene/L
19Thanks!
- Welcome at next Astro-Wise tutorial!
- October 2005
- Netherlands
- www.astro-wise.org