Title: K' Gopal Gopalakrishnan, Ken Goldberg
1 D-Space and Deform Closure A Framework
for Holding Deformable Parts
- K. Gopal Gopalakrishnan, Ken Goldberg
- IEOR and EECS, U.C. Berkeley.
2Workholding Rigid parts
- Number of contacts
- Reuleaux, 1876, Somoff, 1900
- Mishra, Schwarz, Sharir, 1987, Markenscoff,
1990 - Nguyen regions
- Nguyen, 1988
- Form and Force Closure
- Rimon, Burdick, 1995
- Immobilizing three finger grasps
- Ponce, Burdick, Rimon, 1995
Mason, 2001
3Workholding Rigid parts
- Caging Grasps
- Rimon, Blake, 1999
- Summaries of results
- Bicchi, Kumar, 2000
- Mason, 2001
- C-Spaces for closed chains
- Milgram, Trinkle, 2002
- Fixturing hinged parts
- Cheong, Goldberg, Overmars, van der Stappen,
2002 - Contact force prediction
- Wang, Pelinescu, 2003
-
-
-
-
4C-Space
- C-Space (Configuration Space)
- Lozano-Perez, 1983
- Dual representation of part position and
orientation. - Each degree of part freedom is one C-space
dimension.
Physical space
C-Space
5Avoiding Collisions C-obstacles
- Obstacles prevent parts from moving freely.
- Images in C-space are called C-obstacles.
- Rest is Cfree.
Physical space
C-Space
6Workholding and C-space
- Multiple contacts.
- 1 Contact 1 C-obstacle.
- Cfree Collision with no obstacle.
- Surface of C-obstacle Contact, not collision.
Physical space
C-Space
7Form Closure
- A part is grasped in Form Closure if any
infinitesimal motion results in collision. - Form Closure an isolated point in C-free.
- Force Closure ability to resist any wrench.
Physical space
C-Space
8Holding Deformable Parts
- Grasp planning Combining Geometric and Physical
models - - Joukhadar, Bard, Laugier, 1994
- Bounded force-closure
- Wakamatsu, Hirai, Iwata, 1996
- Minimum Lifting Force
- - Howard, Bekey, 1999
9Holding Deformable Parts
- Manipulation of flexible sheets
- Kavraki et al, 1998
- Quasi-static path planning.
- - Anshelevich et al, 2000
- Robust manipulation
- - Wada, Hirai, Mori, Kawamura, 2001
10Deformable parts
- Form closure does not apply
- Can always avoid collisions by deforming the part.
11D-Space
- Deformation Space A Generalization of
Configuration Space. - Based on Finite Element Mesh.
12Deformable Polygonal parts Mesh
- Planar Part represented as Planar Mesh.
- Mesh nodes edges Triangular elements.
- N nodes
- Polygonal boundary.
13D-Space
- A Deformation Position of each mesh node.
- D-space Space of all mesh deformations.
- Each node has 2 DOF.
- D-Space 2N-dimensional Euclidean Space.
30-dimensional D-space
14Deformations
- Deformations (mesh configurations) specified
as list of translational DOFs of each mesh node. - Mesh rotation also represented by node
displacements. - Nominal mesh configuration (undeformed mesh)
q0. - General mesh configuration q.
q0
Nominal mesh configuration
q
Deformed mesh configuration
15D-Space Example
- Simple example
- 3-noded mesh, 2 fixed.
- D-Space 2-dimensional Euclidean Space.
- D-Space shows moving nodes position.
Physical space
D-Space
16Topological Constraints DT
- Mesh topology maintained.
- Non-degenerate triangles only.
Physical space
D-Space
17Self collisions and DT
Allowed deformation
Undeformed part
Topology violating deformation
18D-Obstacles
A1
- Collision of any mesh triangle with an object.
- Physical obstacle Ai has an image DAi in D-Space.
Physical space
DA1
D-Space
19D-Space Example
20Free Space Dfree
1
4
5
2
3
Part and mesh
y
y
y
y
5
5
5
3
x
x
x
x
3
5
5
5
Slice with nodes 1-4 fixed
Slice with nodes 1,2,4,5 fixed
21Nodal displacement
- Displacements of mesh nodes (q q0)
- FEM Nodal displacement X
- Vector of nodes displacement in global frame.
- Distance preserving transformation.
- X T (q - q0)
D- space
T
Physical Space
22Potential Energy
- Linear Elasticity.
- K FEM stiffness matrix. (2N ?? 2N matrix
for N nodes.) - Forces at nodes
- F K X.
- For FEM with linear elasticity and linear
interpolation, - U(q q0) (1/2) XT K X
23Equilibrium Deformations
- Equilibrium
- Local minimum of U.
- Stable equilibrium
- Strict local minimum of U.
24Workholding
- Part returns to original deformation stable
equilibrium. - Minimum work of UA required to release part.
- Caging grasps, saddle points Rimon99
UA
Returns to qA
25Deform Closure
- Stable equilibrium Deform Closure where
- UA gt 0.
26Theorem Frame Invariance
- Independence from global coordinate frame.
- Proved by showing invariance of
- - Deformation.
- - Potential energy and work.
- - Continuity in D-space.
M
E
27Theorem Equivalence
Form-closure of rigid part
Deform-closure of equivalent deformable part.
?
?
28Numerical Example
4 Joules
547 Joules
29Symmetry in D-Space
- D-Obstacle symmetry
- Obstacle identical for all mesh triangles.
- Prismatic extrusions.
30Symmetry in D-Space
- Topology preservation symmetry.
- Define D'T
- - No mesh collisions.
- - No degenerate triangles.
- DT ?? D'T.
- Mirror images
- - No continuous path.
- D'T identical for pairs of mesh triangles.
1
4
5
3
2
4
1
5
2
3
31Future work
- Optimal 2-finger deform closure
- Given jaw positions.
- Determine optimal jaw separation s .
s
32Quality Metric
33Quality metric
34Quality metric
Stress
eL
Strain
Plastic Deformation
Q min UA, UL
353D Meshes
- Tetrahedral elements
- - 3 DOF per node.
- Box elements
- - Translational Rotational DOF.
- Sheet metal
- - Shell elements.
36Contact Graph
Potential Energy
37Numerical Example
Undeformed s 10 mm.
Optimal se 5.6 mm.
Rubber foam. FEM performed using ANSYS.
Computing Deform Closure Grasps, K. "Gopal"
Gopalakrishnan and Ken Goldberg, submitted to
Workshop on Algorithmic Foundations of Robotics
(WAFR), Oct. 2004.
38Thank You
http//alpha.ieor.berkeley.edu