Outline - PowerPoint PPT Presentation

1 / 79
About This Presentation
Title:

Outline

Description:

Sean Hartnoll (KITP), Christopher Herzog (Washington), Pavel Kovtun (KITP) ... Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, ... – PowerPoint PPT presentation

Number of Views:152
Avg rating:3.0/5.0
Slides: 80
Provided by: qptPhysic
Category:
Tags: outline | sean | taylor

less

Transcript and Presenter's Notes

Title: Outline


1
(No Transcript)
2
Outline
1. Superfluid/supersolid/insulator quantum
transitions Insulators at integer and
commensurate densities 2. Theory of
quantum-critical transport
Collisionless-t0-hydrodynamic crossover
of conformal field theories 3. Hydrodynamics at
incommensurate densities with impurities and a
magnetic field Exact relations between
thermoelectric co-efficients 4. Nernst effect
in the cuprate superconductors
3
Outline
1. Superfluid/supersolid/insulator quantum
transitions Insulators at integer and
commensurate densities 2. Theory of
quantum-critical transport
Collisionless-t0-hydrodynamic crossover
of conformal field theories 3. Hydrodynamics at
incommensurate densities with impurities and a
magnetic field Exact relations between
thermoelectric co-efficients 4. Nernst effect
in the cuprate superconductors
4
Trap for ultracold 87Rb atoms
5
M. Greiner, O. Mandel, T. Esslinger, T. W.
Hänsch, and I. Bloch, Nature 415, 39 (2002).
6
Boson Hubbard model
M.P.A. Fisher, P.B. Weichmann, G. Grinstein,
and D.S. Fisher Phys. Rev. B 40, 546 (1989).
7
Phase diagram of doped antiferromagnets
La2CuO4
8
Phase diagram of doped antiferromagnets
g
La2CuO4
N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694
(1989).
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev
and M.P.A. Fisher, Science 303, 1490 (2004).
9
(No Transcript)
10
Phase diagram of doped antiferromagnets
g
La2CuO4
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5,
219 (1991).
Hole density
d
11
Phase diagram of doped antiferromagnets
g
La2CuO4
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5,
219 (1991).
Hole density
d
12
M. Vojta and S. Sachdev, Phys. Rev. Lett. 83,
3916 (1999)
13
pair density wave
M. Vojta and S. Sachdev, Phys. Rev. Lett. 83,
3916 (1999)
14
M. Vojta and S. Sachdev, Phys. Rev. Lett. 83,
3916 (1999)
15
Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
16
Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
17
Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
18
Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
19
Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
20
Glassy Valence Bond Supersolid
Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C.
Lupien, T. Hanaguri, M. Azuma, M. Takano, H.
Eisaki, H. Takagi, S. Uchida, and J. C. Davis,
Science 315, 1380 (2007)
21
Outline
1. Superfluid/supersolid/insulator quantum
transitions Insulators at integer and
commensurate densities 2. Theory of
quantum-critical transport
Collisionless-t0-hydrodynamic crossover
of conformal field theories 3. Hydrodynamics at
incommensurate densities with impurities and a
magnetic field Exact relations between
thermoelectric co-efficients 4. Nernst effect
in the cuprate superconductors
22
Outline
1. Superfluid/supersolid/insulator quantum
transitions Insulators at integer and
commensurate densities 2. Theory of
quantum-critical transport
Collisionless-t0-hydrodynamic crossover
of conformal field theories 3. Hydrodynamics at
incommensurate densities with impurities and a
magnetic field Exact relations between
thermoelectric co-efficients 4. Nernst effect
in the cuprate superconductors
23
The insulator
24
Excitations of the insulator
25
Excitations of the insulator
26
(No Transcript)
27
(No Transcript)
28
Non-zero temperature phase diagram
Insulator
Superfluid
Depth of periodic potential
29
Non-zero temperature phase diagram
Dynamics of the classical Gross-Pitaevski equation
Insulator
Superfluid
Depth of periodic potential
30
Non-zero temperature phase diagram
Dilute Boltzmann gas of particle and holes
Insulator
Superfluid
Depth of periodic potential
31
Non-zero temperature phase diagram
No wave or quasiparticle description
Insulator
Superfluid
Depth of periodic potential
32
Resistivity of Bi films
D. B. Haviland, Y. Liu, and A. M. Goldman, Phys.
Rev. Lett. 62, 2180 (1989)
M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)
33
Non-zero temperature phase diagram
Insulator
Superfluid
Depth of periodic potential
34
Non-zero temperature phase diagram
Collisionless-to hydrodynamic crossover of a
conformal field theory (CFT)
Insulator
Superfluid
Depth of periodic potential
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
35
Collisionless-to-hydrodynamic crossover of a CFT
in 21 dimensions
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
36
Collisionless-to-hydrodynamic crossover of a CFT
in 21 dimensions
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
37
Hydrodynamics of a conformal field theory (CFT)
The scattering cross-section of the thermal
excitations is universal and so transport
co-efficients are universally determined by kBT
Charge diffusion constant Conductivity

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714
(1997).
38
Hydrodynamics of a conformal field theory (CFT)
The AdS/CFT correspondence (Maldacena, Polyakov)
relates the hydrodynamics of CFTs to the quantum
gravity theory of the horizon of a black hole in
Anti-de Sitter space.
39
Hydrodynamics of a conformal field theory (CFT)
The AdS/CFT correspondence (Maldacena, Polyakov)
relates the hydrodynamics of CFTs to the quantum
gravity theory of the horizon of a black hole in
Anti-de Sitter space.
Holographic representation of black hole physics
in a 21 dimensional CFT at a temperature equal
to the Hawking temperature of the black hole.
31 dimensional AdS space
Black hole
40
Hydrodynamics of a conformal field theory (CFT)
Hydrodynamics of a CFT
Waves of gauge fields in a curved background
41
Hydrodynamics of a conformal field theory (CFT)
For the (unique) CFT with a SU(N) gauge field and
16 supercharges, we know the exact diffusion
constant associated with a global SO(8) symmetry
Spin diffusion constant Spin conductivity
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son,
Phys. Rev. D 75, 085020 (2007)
42
Collisionless-to-hydrodynamic crossover of
solvable SYM3
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son,
Phys. Rev. D 75, 085020 (2007)
43
(No Transcript)
44
Collisionless-to-hydrodynamic crossover of
solvable SYM3
P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son,
Phys. Rev. D 75, 085020 (2007)
45
(No Transcript)
46
Outline
1. Superfluid/supersolid/insulator quantum
transitions Insulators at integer and
commensurate densities 2. Theory of
quantum-critical transport
Collisionless-t0-hydrodynamic crossover
of conformal field theories 3. Hydrodynamics at
incommensurate densities with impurities and a
magnetic field Exact relations between
thermoelectric co-efficients 4. Nernst effect
in the cuprate superconductors
47
Outline
1. Superfluid/supersolid/insulator quantum
transitions Insulators at integer and
commensurate densities 2. Theory of
quantum-critical transport
Collisionless-t0-hydrodynamic crossover
of conformal field theories 3. Hydrodynamics at
incommensurate densities with impurities and a
magnetic field Exact relations between
thermoelectric co-efficients 4. Nernst effect
in the cuprate superconductors
48
For experimental applications, we must move away
from the ideal CFT
e.g.
49
For experimental applications, we must move away
from the ideal CFT
  • A chemical potential µ

e.g.
50
For experimental applications, we must move away
from the ideal CFT
  • A chemical potential µ

CFT
e.g.
51
For experimental applications, we must move away
from the ideal CFT
  • A chemical potential µ

CFT
Supersolid
e.g.
52
For experimental applications, we must move away
from the ideal CFT
  • A chemical potential µ

CFT
e.g.
53
For experimental applications, we must move away
from the ideal CFT
  • A chemical potential µ

e.g.
54
For experimental applications, we must move away
from the ideal CFT
  • A chemical potential µ

CFT
e.g.
55
For experimental applications, we must move away
from the ideal CFT
  • A chemical potential µ
  • A magnetic field B

CFT
e.g.
56
(No Transcript)
57
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
58
Conservation laws/equations of motion
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
59
Constitutive relations which follow from Lorentz
transformation to moving frame
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
60
Single dissipative term allowed by requirement of
positive entropy production. There is only one
independent transport co-efficient
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
61
For experimental applications, we must move away
from the ideal CFT
  • A chemical potential µ
  • A magnetic field B

CFT
e.g.
62
For experimental applications, we must move away
from the ideal CFT
  • A chemical potential µ
  • A magnetic field B
  • An impurity scattering rate 1/timp (its T
    dependence follows from scaling arguments)

CFT
e.g.
63
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
64
From these relations, we obtained results for the
transport co-efficients, expressed in terms of a
cyclotron frequency and damping
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
65
From these relations, we obtained results for the
transport co-efficients, expressed in terms of a
cyclotron frequency and damping
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
66
From these relations, we obtained results for the
transport co-efficients, expressed in terms of a
cyclotron frequency and damping
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
67
From these relations, we obtained results for the
transport co-efficients, expressed in terms of a
cyclotron frequency and damping
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
68
(No Transcript)
69
(No Transcript)
70
Outline
1. Superfluid/supersolid/insulator quantum
transitions Insulators at integer and
commensurate densities 2. Theory of
quantum-critical transport
Collisionless-t0-hydrodynamic crossover
of conformal field theories 3. Hydrodynamics at
incommensurate densities with impurities and a
magnetic field Exact relations between
thermoelectric co-efficients 4. Nernst effect
in the cuprate superconductors
71
Outline
1. Superfluid/supersolid/insulator quantum
transitions Insulators at integer and
commensurate densities 2. Theory of
quantum-critical transport
Collisionless-t0-hydrodynamic crossover
of conformal field theories 3. Hydrodynamics at
incommensurate densities with impurities and a
magnetic field Exact relations between
thermoelectric co-efficients 4. Nernst effect
in the cuprate superconductors
72
From these relations, we obtained results for the
transport co-efficients, expressed in terms of a
cyclotron frequency and damping
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
73
From these relations, we obtained results for the
transport co-efficients, expressed in terms of a
cyclotron frequency and damping
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
74
LSCO - Theory
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
75
(No Transcript)
76
LSCO - Theory
Output
Only input parameters
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
77
LSCO - Theory
Output
Only input parameters
Similar to velocity estimates by A.V. Balatsky
and Z-X. Shen, Science 284, 1137 (1999).
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
78
To the solvable supersymmetric, Yang-Mills theory
CFT, we add
  • A chemical potential µ
  • A magnetic field B

After the AdS/CFT mapping, we obtain the
Einstein-Maxwell theory of a black hole with
  • An electric charge
  • A magnetic charge

The exact results are found to be in precise
accord with all hydrodynamic results presented
earlier
S.A. Hartnoll, P.K. Kovtun, M. Müller, and S.
Sachdev, arXiv0706.3215
79
Conclusions
  • General theory of transport in a weakly
    disordered vortex liquid state.
  • Relativistic magnetohydrodynamics offers an
    efficient approach to disentangling momentum and
    charge transport
  • Exact solutions via black hole mapping have
    yielded first exact results for transport
    co-efficients in interacting many-body systems,
    and were valuable in determining general
    structure of hydrodynamics.
  • Simple model reproduces many trends of the Nernst
    measurements in cuprates.
Write a Comment
User Comments (0)
About PowerShow.com