Texture modeling, validation and synthesis - The HOS way - PowerPoint PPT Presentation

About This Presentation
Title:

Texture modeling, validation and synthesis - The HOS way

Description:

... output system of linear equations. Texture Synthesis. x11. x12 ... M systems of M Linear equations. Texture Synthesis. Causal AR model. Non-causal AR model ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 19
Provided by: rice9
Category:

less

Transcript and Presenter's Notes

Title: Texture modeling, validation and synthesis - The HOS way


1
Texture modeling, validation and synthesis - The
HOS way
  • Srikrishna Bhashyam
  • Mohammad J Borran
  • Mahsa Memarzadeh
  • Dinesh Rajan

2
Key Results
  • Textures can be modeled as linear, non-Gaussian,
    stationary random field - validated using HOS.
  • Textures can be synthesized using
  • causal / non-causal AR models.
  • AR model parameters can be estimated accurately
    using HOS.

3
Why Higher Order Statistics?
  • Deviations from Gaussianity
  • for Gaussian, all higher order spectra (ordergt2)
    0
  • Non-minimum phase extraction
  • unlike power spectrum, true phase is preserved
  • Detect and characterize non-linearity
  • Applications
  • array processing, pattern/signal
    classification...

4
What are these Monsters?
  • Moments
  • Cumulants
  • cumulant central moment (order lt 3)
  • Gaussian processes, all cumulants are zero (order
    gt 2)
  • Cumulant Spectra
  • bispectrum FT order 3 cumulant

Xt
kt1
k
kt2
5
Challenges
  • Storage and computation of bispectrum
  • 128x128 image
  • 4D matrix with 268,435,456 elements (1.07 GB)
  • Symmetry gt redundant elements
  • factor of 12 reduction

6
Non-redundant Region of Bispectrum
  • 6-fold symmetry
  • S3x(u, v) S3x(v, u)
  • S3x(u, -u-v)
  • S3x(-u-v, u)
  • S3x(v, -u-v)
  • S3x(-u-v, v)
  • If x is real (12-fold symmetry)
  • S3x(u, v) S3x(-u, -v)


7
2-D ARMA Model
H(z)
w(m, n)
x(m, n)
  • Bispectrum
  • Bicoherence
  • Constant for linear processes
  • Zero for Gaussian processes

8
Model Validation Tests
  • Gaussianity test
  • Statistical test to check if the bicoherence is
    zero
  • Test statistic is chi-squared distributed

National Institute of Agro-Environmental
Sciences, Japan http//ss.niaes.affrc.go.jp/pub/m
iwa/probcalc/chisq/
9
Model Validation Tests
  • Linearity test
  • Statistical test to check if the bicoherence is
    constant
  • Is the variability of the bicoherence small
    enough?
  • Spatial reversibility test
  • Does the texture have any spatial symmetry ?
  • Is the imaginary part of bicoherence zero ?

10
Statistical Test Results
Brodatz Textures http//www.ux.his.no/tranden/
brodatz.html
  • Linear, non-Gaussian, spatially irreversible

11
Texture Synthesis
  • 2-D, non-causal, non-Gaussian, AR model
  • Causal AR
  • Direct IIR filtering recursive equation
  • Non-causal AR
  • No recursive equation
  • Calculate truncated impulse response
  • Solve input-output system of linear equations

12
Texture Synthesis
w11
x11
1
M
M-1
w12
x12
M
1

M
1
2
wMM
xMM
Image size M x M
13
Texture Synthesis
w11
x11
w12
x12
0

0
wMM
xMM
M systems of M Linear equations
14
Texture Synthesis
  • Causal AR model

Non-causal AR model
15
Parameter Estimation
  • Try to match more than the power spectrum
  • Cumulants instead of correlations
  • C a c instead of R a r
  • Calculate only the cumulants that are needed

16
Parameter Estimation
  • AR parameter estimate with 64 x 64 texture

Actual a Estimated a
17
Summary
  • Higher-order spectrum basics
  • Linearity, Gaussianity and spatial reversibility
  • Texture model validation
  • 2-D Causal and Non-causal AR models
  • Texture synthesis
  • Cumulant based causal AR parameter estimation
  • Modeling of real textures
  • Useful for texture classification and
    segmentation
  • HOS useful but too complex

18
References
  • T. E. Hall and G. B. Giannakis, Bispectral
    Analysis and Model Validation of Texture Images,
    Trans. SP, 1995.
  • S. Das, Design of Computationally Efficient
    Multiuser Detectors for CDMA Systems, M. S.
    Thesis, Rice University, 1997.
  • R. Chellappa and R. L. Kashyap, Texture
    Synthesis using 2-D Noncausal Autoregressive
    Models, Trans. ASSP, 1985.
  • A. T. Erdem, A Nonredundant set for the
    Bispectrum of 2-D Signals, ICASSP, 1993.
  • C. L. Nikias and A. P. Petropulu, Higher-order
    Spectra Analysis, 1993.
Write a Comment
User Comments (0)
About PowerShow.com