Structural and Electronic properties of PbTerocksaltCdTezinc blende interfaces - PowerPoint PPT Presentation

1 / 18
About This Presentation
Title:

Structural and Electronic properties of PbTerocksaltCdTezinc blende interfaces

Description:

plane av.potential. position along [100] PbTe(rocksalt) CdTe(zincblende) 10/3/09 ... green- [110] direction. red - [001] direction. experimental data. 10/3/09 ... – PowerPoint PPT presentation

Number of Views:75
Avg rating:3.0/5.0
Slides: 19
Provided by: romanle
Category:

less

Transcript and Presenter's Notes

Title: Structural and Electronic properties of PbTerocksaltCdTezinc blende interfaces


1
Structural and Electronic properties of
PbTe(rocksalt)/CdTe(zinc blende) interfaces
Roman Leitsmann, F. Bechstedt
Institut für Festkörpertheorie und -optik
Friedrich-Schiller-Universität Jena
H. Groiss, F. Schäffler, W. Heiss,
Institut für Halbleiter- und Festkörperphysik
Johannes Kepler Universität Linz
K. Koike, H. Harada, and M. Yano
Osaka Institute of Technology
Sponsored by
2
Motivation
  • Experiment
  • Quantum-Dots are formed by an annealing process
  • W. Heiss et al. Appl. Phys. Lett. 88, 192109(
    2006)
  • they exhibit (110), (100), and (111) facets
  • they show intense mid-infrared luminescence
  • high potential for future applications like
  • mid-infrared quantumdot-laser
  • devices in medical diagnostics
  • mid-infrared spectroscopy

3
Challenge
  • Theory
  • computational demanding
  • shallow Cd d-states
  • relativistic effects
  • exhibit a different lattice structure (PbTe-rs
    CdTe-zb)
  • new kind of interfaces crystal structure
    mismatch
  • PbTe and CdTe are nearly ionic crystals
  • artificial electric fields are induced in the
    slab-approx.

PbTe(rocksalt)
CdTe(zincblende)
plane av.potential
position along 100
4
Band offset
  • Alignment of electrostatic potentials

Two step procedure
PbTe
CdTe
?VBM
VBM(CdTe)
VBM(PbTe)
?(PbTe-CdTe)
  • bulk calculation of VBM w.r.t. the
    plane-averaged potential
  • interface calculation of ?(PbTe-CdTe) ? ?VBM

5
Numerical Details
  • DFT-LDA ground state calculations (VASP 4.6.20)
  • projector augmented wave (PAW) pseudopotentials
  • 200 eV plane wave-cutoff
  • residuum-minimization method for the electronic
    relaxation
  • conjugate-gradient-algorithm for the ionic
    relaxation
  • Interface calculations
  • slabs with 28 or 24 double layers

100
111
110
6
Results
  • Bulk PbTe

Well-known problems with PbTe
Experimental-gap 0.19 eV (L-point) P. Dziawa
et al. phys.stat.sol. 2,1167(2005)
  • too large LDA-gap 0.58 eV
  • negative LDASO-gap -0.12 eV
  • reasonable HSESO-gap 0.15 eV

LDA LDASO HSESO
7
Results
  • Bulk PbTe

Well-known problems with PbTe
Experimental-gap 0.19 eV (L-point) P. Dziawa
et al. phys.stat.sol. 2,1167(2005)
  • too large LDA-gap 0.58 eV
  • negative LDASO-gap -0.12 eV
  • reasonable HSESO-gap 0.15 eV

LDA LDASO HSESO
8
Results
  • Bulk PbTe

Well-known problems with PbTe
Experimental-gap 0.19 eV (L-point) P. Dziawa
et al. phys.stat.sol. 2,1167(2005)
  • too large LDA-gap 0.58 eV
  • negative LDASO-gap -0.12 eV
  • reasonable HSESO-gap 0.15 eV
  • ? but HSE is not suitable for interface
    calculations !

LDA LDASO HSESO
9
Results
  • Bulk PbTe

Well-known problems with PbTe
Experimental-gap 0.19 eV (L-point) P. Dziawa
et al. phys.stat.sol. 2,1167(2005)
  • too large LDA-gap 0.58 eV
  • negative LDASO-gap -0.12 eV
  • reasonable HSESO-gap 0.15 eV
  • ? but HSE is not suitable for interface
    calculations !

? qualitative HSE and LDA differ only near the
L-point
LDA LDASO HSESO
10
Results
  • Structural properties

Structural properties
(110) PbTe/CdTe interface
(100) PbTe/CdTe interface
Leitsmann et al. PRB 74, 085309 (2006), New J.
Phys. submitted (2006)
Te-terminated
Cd-terminated
11
Results
  • Structural properties, (110) interface

green- 110 direction red - 001 direction
experimental data
lateral offset
Leitsmann et al. PRB 74, 085309 (2006), New J.
Phys. submitted (2006)
12
Results
  • Band offset

Type- I heterostructure
LDA
LDASO
? results are used to correctly align the
interface bandstructures
Experimental-gap PbTe 0.19 eV L-point
CdTe 1.6 eV ?-point P. Dziawa et al.
phys.stat.sol. 2,1167(2005)
13
Results
  • PbTe/CdTe (110)

PbTe/CdTe(110) interface LDA-bandstructure
PbTe/CdTe(110) interface relativistic-bandstructur
e
? practically no indications for interface states
in the fundamental gap region
14
Results PbTe-dot
  • Wulff construction

ECS of a PbTe-quantum dot in CdTe-matrix
PbTe/CdTe interface energies
Green - 110-facets (0.20 J/m2) Red -
100-facets (0.23 J/m2) Blue - 111-facets
(0.18 J/m2) uncertainty of 0.04 J/m2
Wulff construction
15
Results PbTe-dot
Wulff construction
Leitsmann et al. PRB 74, 085309 (2006), New J.
Phys. submitted (2006)
gt good agreement with experimental observations
16
Summary
  • compensate artificial boundary effects at polar
    interfaces
  • interface geometries ? excellent agreement with
    experiment (e.g. lateral offset, interface
    separation)
  • interface energies ? equilibrium shape of PbTe
    quantum dots
  • band offsets of PbTe/CdTe interfaces ? type I
    heterostructure
  • interface bandstructure of PbTe/CdTe(110) ?
    almost no interface states inside the fundamental
    gap

Outlook
  • description of free-standing or embedded (in
    CdTe-matrix)
  • PbTe-dots
  • electronic properties of quantum-dot systems
    (dependent on size, shape, etc.)

17
Thank you for your attention.
Sponsored by
18
Additional information
  • Dipole correction

We compensate the artificial dipole potential ?
with a ramp-shaped potential
plane averaged potential
Calculate interface energies by total energy
differences
Energy corrections due to artificial dipole
potential ?
position along 100
Write a Comment
User Comments (0)
About PowerShow.com