Title: Structural and Electronic properties of PbTerocksaltCdTezinc blende interfaces
1Structural and Electronic properties of
PbTe(rocksalt)/CdTe(zinc blende) interfaces
Roman Leitsmann, F. Bechstedt
Institut für Festkörpertheorie und -optik
Friedrich-Schiller-Universität Jena
H. Groiss, F. Schäffler, W. Heiss,
Institut für Halbleiter- und Festkörperphysik
Johannes Kepler Universität Linz
K. Koike, H. Harada, and M. Yano
Osaka Institute of Technology
Sponsored by
2Motivation
- Quantum-Dots are formed by an annealing process
- W. Heiss et al. Appl. Phys. Lett. 88, 192109(
2006) - they exhibit (110), (100), and (111) facets
- they show intense mid-infrared luminescence
- high potential for future applications like
- mid-infrared quantumdot-laser
- devices in medical diagnostics
- mid-infrared spectroscopy
3Challenge
- computational demanding
- shallow Cd d-states
- relativistic effects
- exhibit a different lattice structure (PbTe-rs
CdTe-zb) - new kind of interfaces crystal structure
mismatch - PbTe and CdTe are nearly ionic crystals
- artificial electric fields are induced in the
slab-approx.
PbTe(rocksalt)
CdTe(zincblende)
plane av.potential
position along 100
4Band offset
- Alignment of electrostatic potentials
Two step procedure
PbTe
CdTe
?VBM
VBM(CdTe)
VBM(PbTe)
?(PbTe-CdTe)
- bulk calculation of VBM w.r.t. the
plane-averaged potential - interface calculation of ?(PbTe-CdTe) ? ?VBM
5Numerical Details
- DFT-LDA ground state calculations (VASP 4.6.20)
- projector augmented wave (PAW) pseudopotentials
- 200 eV plane wave-cutoff
- residuum-minimization method for the electronic
relaxation - conjugate-gradient-algorithm for the ionic
relaxation
- Interface calculations
- slabs with 28 or 24 double layers
-
100
111
110
6Results
Well-known problems with PbTe
Experimental-gap 0.19 eV (L-point) P. Dziawa
et al. phys.stat.sol. 2,1167(2005)
- too large LDA-gap 0.58 eV
- negative LDASO-gap -0.12 eV
- reasonable HSESO-gap 0.15 eV
LDA LDASO HSESO
7Results
Well-known problems with PbTe
Experimental-gap 0.19 eV (L-point) P. Dziawa
et al. phys.stat.sol. 2,1167(2005)
- too large LDA-gap 0.58 eV
- negative LDASO-gap -0.12 eV
- reasonable HSESO-gap 0.15 eV
LDA LDASO HSESO
8Results
Well-known problems with PbTe
Experimental-gap 0.19 eV (L-point) P. Dziawa
et al. phys.stat.sol. 2,1167(2005)
- too large LDA-gap 0.58 eV
- negative LDASO-gap -0.12 eV
- reasonable HSESO-gap 0.15 eV
- ? but HSE is not suitable for interface
calculations !
LDA LDASO HSESO
9Results
Well-known problems with PbTe
Experimental-gap 0.19 eV (L-point) P. Dziawa
et al. phys.stat.sol. 2,1167(2005)
- too large LDA-gap 0.58 eV
- negative LDASO-gap -0.12 eV
- reasonable HSESO-gap 0.15 eV
- ? but HSE is not suitable for interface
calculations !
? qualitative HSE and LDA differ only near the
L-point
LDA LDASO HSESO
10Results
Structural properties
(110) PbTe/CdTe interface
(100) PbTe/CdTe interface
Leitsmann et al. PRB 74, 085309 (2006), New J.
Phys. submitted (2006)
Te-terminated
Cd-terminated
11Results
- Structural properties, (110) interface
green- 110 direction red - 001 direction
experimental data
lateral offset
Leitsmann et al. PRB 74, 085309 (2006), New J.
Phys. submitted (2006)
12Results
Type- I heterostructure
LDA
LDASO
? results are used to correctly align the
interface bandstructures
Experimental-gap PbTe 0.19 eV L-point
CdTe 1.6 eV ?-point P. Dziawa et al.
phys.stat.sol. 2,1167(2005)
13Results
PbTe/CdTe(110) interface LDA-bandstructure
PbTe/CdTe(110) interface relativistic-bandstructur
e
? practically no indications for interface states
in the fundamental gap region
14Results PbTe-dot
ECS of a PbTe-quantum dot in CdTe-matrix
PbTe/CdTe interface energies
Green - 110-facets (0.20 J/m2) Red -
100-facets (0.23 J/m2) Blue - 111-facets
(0.18 J/m2) uncertainty of 0.04 J/m2
Wulff construction
15Results PbTe-dot
Wulff construction
Leitsmann et al. PRB 74, 085309 (2006), New J.
Phys. submitted (2006)
gt good agreement with experimental observations
16Summary
- compensate artificial boundary effects at polar
interfaces - interface geometries ? excellent agreement with
experiment (e.g. lateral offset, interface
separation) - interface energies ? equilibrium shape of PbTe
quantum dots - band offsets of PbTe/CdTe interfaces ? type I
heterostructure - interface bandstructure of PbTe/CdTe(110) ?
almost no interface states inside the fundamental
gap
Outlook
- description of free-standing or embedded (in
CdTe-matrix) - PbTe-dots
- electronic properties of quantum-dot systems
(dependent on size, shape, etc.)
17Thank you for your attention.
Sponsored by
18Additional information
We compensate the artificial dipole potential ?
with a ramp-shaped potential
plane averaged potential
Calculate interface energies by total energy
differences
Energy corrections due to artificial dipole
potential ?
position along 100