New Mass Spectrometers University of Hawaii 2005 Partnership Project - PowerPoint PPT Presentation

1 / 51
About This Presentation
Title:

New Mass Spectrometers University of Hawaii 2005 Partnership Project

Description:

New Mass Spectrometers University of Hawaii 2005 Partnership Project – PowerPoint PPT presentation

Number of Views:42
Avg rating:3.0/5.0
Slides: 52
Provided by: CZA9
Category:

less

Transcript and Presenter's Notes

Title: New Mass Spectrometers University of Hawaii 2005 Partnership Project


1
New Mass SpectrometersUniversity of
Hawaii2005Partnership Project
UNCLASSIFIED
9/2007 NCMR Technology Review
F. Scott Anderson
This presentation is UNCLASSIFIED
UNCLASSIFIED
2
Project Information
  • New Mass Spectrometers for NBC Environmental
    Characterization
  • University of Hawaii/HIGP
  • Lead F. Scott Anderson (50)
  • UH Personnel
  • Eric Pilger Physicist (50)
  • Keith Nowicki Physicist (100)
  • Sarah Sherman Geochemist (100)
  • Jeffrey Bosel Physicist (100)
  • Gary McMurtry - Spectroscopist (10)
  • Karen Stockstill (Postdoc 50, but leveraged from
    NASA NAI)
  • Sophie Fung (Fiscal Officer 50)
  • Malie Smith - Clerical (50)
  • Partners
  • Southwest Research Institute MB-TOF Dave Young
    (10), Greg Miller (50)
  • Atom Sciences LA-RI-MS Tom Whitaker (20)
  • Sandia Shock Design Testing Tony Mittias
    (15)
  • Jet Propulsion Laboratory ESI-RFMS Advising
    Steven Smith (20)

3
Program Details
  • Date of award 3/2005
  • Date of receipt of funds 11/2005
  • Date work actually started 11/2005
  • Percent of funds spent to date
  • Year 1 100
  • Year 2 20 (no funds yet received)

4
Funding Issues
5
Objectives
  • EI RFMS
  • RFMS Shock tolerant mass filtering method
  • EI Atmospheric chemistry
  • Leverages NASA MIDP
  • LA-RI-MS
  • RI-MS for in-situ high precision isotope
    detection
  • New MBTOF MS
  • Leverages NASA PIDDP, NAI, ONR IED
  • Outline
  • RFMS
  • Principle
  • Current progress
  • Results
  • Future direction
  • LARIMS
  • Principle
  • Previous results
  • Current Progress
  • Future direction
  • Program direction

6
Part 1 EI-RFMS
UNCLASSIFIED
UNCLASSIFIED
7
RFMS Principle
Detector - FC - Imager
Mass Disperser - 4 pole - 8 pole
Ionizer - Filament - EGA
8
RFMS Progress
  • Improved ion source
  • Detector
  • Improved imaging detector
  • Initiated CMOS design under external funding
  • Developed data interpretation algorithms
  • Repackaged RFMS
  • Increased RF ion source voltage capability
  • Software port to Linux
  • Tested vacuum system
  • Low power
  • Shock tolerant

9
1. Tested Circular Filament Source
  • Beam spot size same
  • Improved efficiency
  • Reduced power
  • Enhanced longevity
  • Improved shape
  • Uses less sample

10
1. Pressure vs signal strength
Picoammeter Limit
MCPCCD
11
1. Pressure vs Resolution
1.2e-6 torr
3E-7 torr
12
1. Ion Source
  • Beam Size
  • Resolving power proportional to beam/dispersion
    ratio
  • OTS models about 50 times too coarse
  • Will require complex design for desired 10 micron
    beam
  • Sub-contracted design of improved model in
    progress

13
2. Detector
  • MCP/Phosphor screen coupled with CCD Camera
  • MCP provides ion counting capability
  • CCD provides
  • 16 bit resolution (gtDNR)
  • 1-106 msec integration time
  • lt100 msec read time
  • Improved speed and sensitivity

2"
14
2. CMOS Detector Design
21 mm
Active area
20.88 mm
gt93 active without active edge processing
928 x 128 pixels 118,784
4.3M transistors
Nuclear Instr. Meth. A565 (2006)
15
3. Algorithms
  • Spot Finding
  • If deformed, don't know ring position or shape a
    priori
  • Automate ID of size location of spot/ring
  • Self calibration
  • Steer beam without RF to 4 x-y voltage offsets
  • Maps offset voltage vs camera location
  • Improves extraction of spectrum
  • Use mapping to determine exact part of image for
    spectral extraction

16
4. Repackaging
  • Needed to repackage existing RFMS components
  • Wanted portable unit to allow wider range of
    sampling
  • Needed more flexibility of components for
    changing out elements and placement

4"
8"
17
4. Repackaging
18
5. Higher Voltages
  • Acceleration
  • Smaller beam
  • Uniform detector response
  • Purchased higher voltage power supplies
  • Dispersion
  • Required by higher acceleration
  • Potential for greater dispersion
  • Improved amplifier from 10V to 250V

8"
12"
19
6. Linux Port
  • Full Computer Control
  • Required for Portability and Miniaturization
  • Allows for more extensive testing of parameter
    space
  • Utilized small, controllable modules D/A
    converter
  • More robust OS
  • Faster than Labview

20
7. Low Power Vacuum
  • Non-Evaporable Getter (NEG)
  • Performance similar to other systems
  • At minimum leak rate, lasted gt1 week
  • Ion Pump
  • 20 mW power usage

8
21
Result M0.1-2000, R10, SNRgt1000
  • Imaging detector
  • R10
  • SNR gt1000
  • M 0.1-2000
  • Air
  • FC43
  • 10X Faster
  • 10X Less Sample

22
Part 2 LA-RI-MS
UNCLASSIFIED
UNCLASSIFIED
23
Geolocation
  • Isotope ratios vary as a function of locale
  • Light isotopes fractionate by atmospheric
    processes
  • Heavy isotopes ratios a function of geology
  • Sr others used to locate origins of
  • Roman mercenaries (Schweissing Grupe, 2003)
  • "Iceman" (Hoogerwerff et al, 2001)
  • Prehistoric slaves (Cox Sealy, 1997)
  • Horses identities (Ayliff et al, 2004)
  • Explosives (McGuire, 2005 Siegel, 2003)
  • Sr isotopes concentrate in body
  • Teeth Fixed during first 10 years of life
  • Bones Months - years of last residence
  • Hair 0.5-50 days (Ayliff et al, 2004)

24
Geology
  • Rocks have 87Rb, decays to 87Sr
  • Older rocks have higher 87Sr/86Sr ratio's
  • Water acquires signature of local geology
    (Montgomery et al, 2006)
  • Sr isotopes absorbed in body orally (Kelly et al,
    2005)
  • Food water
  • 50-1000 ppm
  • Typically measurement 0.001 to 0.0001 (Bentley
    et al, 2006)
  • Requirement
  • Separate 87Rb-87Sr R300K
  • 87Sr/86Sr .02

25
Precision Abundance Goals
For fixed ablation volume
26
How LD-RI-MS Mode Works
Laser Desorption Resonance Ionization Mass Spec
  • Laser desorption
  • 99.9 Neutrals
  • 0.1 Prompt Ions
  • Remove prompt ions
  • RI remaining neutrals
  • Only selected element (Sr or Rb) ionized
  • Detect with isotopes with MS

Tuned only for Sr or Rb
Resonance Ions
Sample
27
Resonance Ionization
  • All elements possess unique energy levels
  • Unique energy (l) to raise e- to each level
  • Use set of tuned lasers to stimulate excitation
    steps for a given element
  • More lasers provide more selectivity
  • Applied to gas phase

5s6d1D2
Energy (eV)
5d2D5/2
5s6p1P01
5p2 P3/2
5s2 1S0
5s2 S1/2
Sr
Rb
Base state
28
LA-RI-MS Lab Setup
  • System Overview

29
LA-RI-MS Previous Work
  • Celestite LARIMS (note scale 0.12V)

30
Previous Results
  • Only need 460, 554 at 2-5 mJ
  • 2 photon ionization from power in 554
  • 1064 not required, may reduce lasers from 3 -gt 2
  • 87Sr/86Sr precision goal 0.0002
  • Old best 87Sr/86Sr precision
  • Celestite (200,000 ppm) 0.0041
  • Basalt (1000 ppm) 0.0081
  • Basalt glass (100 ppm) 0.0109

31
LDRIMS Progress
  • Test LD RI laser attenuation ?
  • Avoid off mass spec axis LD ?
  • Enable RI laser translation to intersect neutrals
    closer to sample, improving efficiency ?
  • Improve LD process ?
  • Improve ion removal ?
  • Increase precision accuracy ?
  • Minimize RI laser power ?
  • Install mini non-jittering laser
  • Complete MBTOF development LD testing

32
4. Improving LD
  • Previously had trouble making pits of sufficient
    volume
  • Gas in laser needed replenishing
  • As 45 ablation proceeds
  • Pit deepens
  • Fractionation worsens
  • Conical features form
  • May represent stronger points in a material

33
4. Precision vs Shots (Depth)
  • As LA proceeds, 45 ablation pit deepens
  • Ejecta directed away from mass spectrometer
  • Precision degrades

Adapted from Ma et al, 1995
34
5. Improve Ion Removal
  • Scheme prompt ions from RI imperfect
  • Required higher voltage than expected arcing
  • LA ions had more energy than anticipated
  • New plan use RTOF/MBTOF
  • Increase initial e-field to accelerate prompt
    ions into MS hard
  • Energy high enough to penetrate mirrors
  • Reduce field for RI so ions bounce

Mirror
TOF
Ions
Detector
Mirror
Ions
Detector
35
6. Precision Accuracy
  • Improvements come from
  • Improvements in analysis software
  • New custom Sr standards
  • Improvements in the instrument
  • Test LD RI laser attenuation ?
  • Avoid off mass spec axis LD ?
  • Enable RI laser translation to intersect neutrals
    closer to sample, improving efficiency ?
  • Improve LD process ?
  • Improve ion removal ?
  • Install mini non-jittering laser

36
6. Precision Accuracy
  • Spectra show power jitter
  • Determine 1st PC
  • Align to 1st PC
  • Sort in order of fit to 1st PC
  • Vertical
  • Mean
  • Standard Deviation
  • Derive
  • Accuracy from sum of the means
  • Precision from STDDEV summed in quadrature,
    divided by of spectra
  • Include spectra until precision degrades

37
6. Solid Sr Standards
  • Need standards for instrument testing
  • Large (r0.25)
  • Solid (not powdered)
  • Uniform
  • Single xal
  • Glass
  • Abundance 1-10K ppm
  • Measured using SOA method
  • No such standards are available
  • Custom standards developed
  • Manufacture difficult
  • Measurement lengthy

38
6. Standard Results
  • Created from
  • Basalt
  • Andesite
  • Strontianite
  • Li-Tri-Borate Flux
  • Still working on lt1 ppm
  • NSP has expressed interest in samples

39
6. Results
  • Current best 87Sr/86Sr precision
  • Celestite (200,000 ppm) 0.0008 (old 0.0041)
  • Basalt (1000 ppm) 0.0018 (old 0.0081)
  • Basalt glass (100 ppm) 0.0038 (old 0.0109)
  • 5X improvement
  • Need 4-20X more improvement for goal
  • Reduce jitter
  • Improving efficiency

40
6. Results
41
7. Minimize Laser Power
  • To miniaturize instrument
  • Seek to minimize laser size complexity
  • Proportional to laser output power
  • Testbed designed to ensure sufficient power for
    Sr
  • 1064 50-100 mJ
  • 554 2-20 mJ
  • 461 2-20 mJ
  • Minimum required unknown
  • Other elements lower than expected
  • 50-100 µJ

Savina et al, 2003
42
7. Power Results for 2 lasers
  • Best tuning of l power shows
  • Minimizing green
  • 461 2 mJ
  • 554 400 µJ
  • Minimizing blue
  • 461 400 µJ
  • 554 2 mJ
  • Therefore, Sr requires
  • 400 µJ of 461 554
  • 1.8 mJ other

43
7. Further Power Reduction
  • Chance of laser photons interacting to cause RI
    1 in 1011
  • Hence, need many photons (400 mJ)
  • Other spectroscopy demonstrated Herriot or White
    cells
  • Increases interaction path length, and odds of RI
  • Could reduce required photons by factor of 50-100

44
What about Miniaturization?
45
8. Mini 206 nm YtterbiumYAG
Damaged by UPS!
Electronics
In 3-8W continuous Out 0.5GW/cm2 (25 mm spot,
400 ps), jitter lt 500 ns, 16x18 cm, solid state
46
9. Mini Mass Spectrometer
47
9. MBTOF Status
  • Planned delay until 9/07
  • In return receive miniature NASA flight prototype
  • Delivery 12/07
  • Planned test with miniature 206 laser 9/07
  • Damaged laser delayed test

48
Year 2 Side-by-side summary
Tasks as defined by Year 2 SOW
RFMS
LARIMS
49
Publications
  • Publications
  • Anderson, F.S., T. Whitaker, E. Pilger, K.
    Nowicki, S. Sherman, D. Young, G. Miller, B.
    Peterson, J. Mahoney, M. Norman, J. Boyce, J.
    Taylor, H. McSween, The Mars Age eXperiment
    (MAX) A Laser Desorption Resonance Ionization
    Mass Spectrometer for In-Situ Rb-Sr Geochronology
    and Elemental Chemistry, Astrobiology, submitted,
    April 2007.
  • Conference presentations
  • Anderson, F.S., T. Whitaker, E. Pilger, K.
    Nowicki, S. Sherman, D. Young, G. Miller, B.
    Peterson, J. Mahoney, M. Norman, J. Boyce, J.
    Taylor, H. McSween, Mars Age experiment, 2007
  • F. S. Anderson, T.J. Whitaker, K. Nowicki, S.
    Sherman, J. Mahoney, G. Miller, D. Young, B.
    Peterson, In-Situ Geochronology using Resonance
    Ionization, AGU, 2007
  • F. S. Anderson, New Mass Spectrometers for NBC
    Environmental Characterization, Intelligence
    Community Summit, 2007
  • F. S. Anderson, T.J. Whitaker, E. Pilger, G.
    Miller, D. Young, B. Peterson, J. Mahoney, S.
    Sherman, L. French, M. Norman, S. Sharma, Mars
    Age experiment (MAX), 2006
  • Manuscript in preparation
  • Anderson, F.S., T. Whitaker, E. Pilger, K.
    Nowicki, S. Sherman, D. Young, G. Miller, B.
    Peterson, J. Mahoney, M. Norman, J. Boyce, J.
    Taylor, H. McSween, A Shock Tolerant Rotating
    Field Mass Spectrometer

50
Experiments
  • RFMS last 6 months (300 Expts 70 tests)
  • Beam shape vs. energy 10 tests
  • Spectral runs at different energies 10 tests
  • NEG/Ion Pump vacuum test 10 tests
  • Current vs. pressure test 10 tests
  • Beam shape (fuzziness) vs. pressure 10 tests
  • Characterization of Circular filament 10 tests
  • LARIMS last 6 months
  • LA-RI-MS 350 tests, 172500 spectra taken
  • Using custom, well-calibrated samples

51
Summary Assessment
  • RFMS
  • Getting smaller, better
  • Vacuum subsystem initial testing positive
  • LARIMS
  • Results improving
  • Size and power requirements improving
  • Transition Plan
  • TSWG
  • Cubic Corporation (JIEDDO, CNTPO, MIO)
  • NGA (Geolocation field portal)
  • Positive community response
  • Need proposed level of funding to meet DIA goals
Write a Comment
User Comments (0)
About PowerShow.com