Title: Atmosphere II
1Atmosphere II
- Emission transport deposition
- Deposition and deposition types
- Aerosols
- Sampling methods
- Example Erzgebirge
- Background?
2Parameters at the interface of atmo-, hydro-, and
biosphere
Plant cover
Soil characteristics
Weather conditions
Relief
Reflection capacity
Buildings
Wind
Wind
Cloud cover
T C
Roughness
speed
v
direction
Radiation
Temperature
Precipitation
layers
Turbulence
after Däßler (1986)
Effective T increase (C)
phys.-chem.
Heat-
Wash-
Impuls
photochem.
Diffusion
characteristics
contents
out
reaction
phys.-chem.
Sedimen-
reaction
tation
DEPOSITION
EMISSION
TRANSMISSION
3Types of atmospheric deposition
- Wet deposition (easily soluble compounds
Me-chlorides, -sulfates, etc.) - Dry deposition (aerosols)
- Soil particles and mineral dusts (Al, Si, Ti)
- Marine salts (Na, Cl)
- Organic particles (pollen and spores)
- Soot, incl. vegetation fires (C, As, Cr, Cu, Pb,
V, Zn) - Industrial smog (ammonium sulfate and -nitrate)
- Interception deposition
4Sampling Methods
Moss- technique
Büchner funnel ø 17,5 cm
Deposition collector
2 L PE-bottle, screw top,
with sample
1 m
PVC tube, 120 cm long, dug into soil
Mineral soil
Low Volume sampler
5Production, growth, and removal of atmospheric
aerosols
Jacob 1999 fig. 8.2
6Average volume size distribution of continental
aerosols
from Warneck 1988
1) Background aerosol 2) normal background
aerosol 3) background disturbed by urban plume
4) average urban aerosol dashed curve rural
continental aerosol (smoothed idealised
log-normal display)
7Tropospheric particle residence times
from Jaenicke 1978
8Typical composition of fine continental aerosol
Heintzenberg 1989 in Jacob 1999 fig. 8.1
9Radiative effects of aerosols
Scattering ... Visibility reduction
... Pertubation to climate Scattering of solar
radiation by aerosols increases Earths albedo
because a fraction of the scattered light is
reflected by to space. The result is cooling.
Problem anthropogenic aerosols vs. natural
aerosols, e.g., from volcanic eruptions
after Jacob 1999 fig. 8.6
10Global averaged radiative forcing as of 1850
from IPCC 1995
11Changes in solar radiation balance due to various
means of forcing
W m2
direct anthropogenic SO4 aerosol - 0.3 (-
0.3 - 0.5)
direct natural SO4 aerosol - 0.26
increase in cloud albedo from SO4 aerosol - ?
(negligible?)
biomass burning aerosols - ?
Anthropogenic CO2 increase 1.5
other greenhouse gases (CH4, N2O, ) 0.9
12Work in the Eastern Erzgebirge
Czech Republic
Elbe River valley, Germany
Pollutant pathways
13Research site Oberbärenburg
elevation 735 m a.s.l. position 5047' N,
1343' E observations since 1985
14Oberbärenburg - parameters
trace gases SO2, O3, NO, NO2, NH3, HNO3,
HCl aerosols SO42-, Cl-, NO3-, NH4, ..., trace
elements fog visibility, LWC, chemical
composition precipitation wet only, bulk,
canopy seepage water S and N isotope
ratios meteorology air TC, rH (open field,
tower, canopy), global radiation, short-wave
radiation, r. balance precipitation (open field,
canopy) wind direction and speed, 3-D wind
field leaf humidity, air pressure, soil
T hydrology soil humidity, soil tension
15Average deposition trendsin the Erzgebirge
16Erzgebirge sulfate-S input over spruce (Picea
abies)
data from Oberbärenburg
17Erzgebirge Nitrogen input over spruce
data from Oberbärenburg
18Erzgebirge average pH-values, spruce canopy
throughfall
data from Oberbärenburg
19Material and methods in VERTIKO
- Relevant species
- a) for deposition NO, NO2, HNO2, HNO3, NO3-
(s), org. N-compounds NH3 NH4 (s) - b) for atmospheric HNO2 NO3 N2O5
- Methods continuous flux measurements
- Coupling of micrometeorological methods with
denuder technique
20Dry deposition
Wet deposition (precipitation fog)
Fvertikal 1
NH3, NH4
NOx, HNO3, NO3-
NH4 NO3-
Constant flux layer
Fhorizontal 2
Fhorizontal 1
Fvertikal 2
Fcanopy throughfall
NH4 NO3-
21Atmospheric input (1990s)and drinking water
quality
TVO precipitation drinking (mg L-1)
(1990) minmax water pH
6.59.5 3.0 8.2 (4.2) 4.3
7.6 Al 0.2 lt0.05 0.4
lt0.04 7 Cd 0.005 lt0.0001
0.007 0.002 0.02 Cr 0.05
lt0.005 0.003 lt0.00010.001 Cu
3.0 lt0.001 0.02 0.0003 0.4
Fe 0.2 lt0.1 0.37
0.002 4 Mn 0.05 lt0.05 0.07
lt0.005 0.7 Ni 0.05 lt0.001
0.03 0.001 0.04 Pb 0.04
lt0.001 0.02 lt0.0005 0.1 Zn 5.0
lt0.01 0.28 lt0.01 3.3
TVO Trinkwasserverordnung (Fassung
1990) Totalisatoren diese Arbeit (Elke
Bozau. 1994) Trinkwasser minmax Bereich (Ilka
Steiner. 1994)
22Wet deposition concentrations in µg L-1
eastern Erzgebirge
western Harz
bulk
throughf.
bulk
throughf.
0.7
1.5
0.8
3.2
0.1
0.3
0.2
0.5
0.05
0.3
0.1
0.5
0.3
0.9
0.6
1.4
1.6
3.3
2.8
7.3
0.7
2.0
0.6
2.3
4.0
7.0
13.9
26.6
0.45
1.7
1.2
4.5
30
50
14.0
39.1
n 135
n 105
n 22
n 77
early 1990s
late 1980s
23Annual variation of As- and Pb-concentrations in
total deposition
data from Oberbärenburg
24Dry deposition in the eastern Erzgebirge 1992 94
25Factor analysis for source apportionment
26Dry and wet deposition, Erzgebirge
1
0
0
0
0
c
)
1
0
0
0
0
1
0
0
0
a
)
µg L-1
1
0
0
0
1
0
0
ng m-3
1
0
0
1
0
K
A
l
1
0
1
0
0
0
K
A
l
F
e
d
)
1
0
0
1
0
µg L-1
1
0
,
1
ng m-3
0
.
0
1
Z
n
C
u
C
d
P
b
27Total deposition (g ha-1 a-1) in Europe
10000
Fe
Erzgebirge
Zn
1000
Mn
Cu
Pb
100
Ni
10
Cd
1
(other European data from Führer et al. 1988)
28What is "Background"?
Element concentrations in precipitation (µg L-1)
Pb
Feb '75 Dez '79 Sep '81 Mrz '88
Hubbard Brook Exp Forest Tom Siccama, unpubl.
Eastern Erzgebirge 199294
29Peat profiles witness for pollution history?
Pb (µg g-1)
0
- Palynological and 14C dating (error 70 a)
- Increase of Pb-concentrations, pronounced from
500 AD. - What happened from 650 to 340 BC?
- Anomalies below 180 cm probably geogenic
(cm)
50
100
150
200