Structural Health Monitoring using Parametric Models in System Identification PowerPoint PPT Presentation

presentation player overlay
1 / 20
About This Presentation
Transcript and Presenter's Notes

Title: Structural Health Monitoring using Parametric Models in System Identification


1
Structural Health Monitoring using Parametric
Models in System Identification
  • Tricia Maruki
  • University of California-Irvine
  • REUJAT 2004
  • 23 July 2004

Dr. Masanobu Shinozuka, UC Irvine Dr. Akira Mita,
Keio University
2
Outline
  • Background
  • General procedure
  • Models
  • Experiment setup and results
  • Conclusion and acknowledgements

3
Structural Health Monitoring
  • Gathering signals
  • Cleansing of signals
  • System identification
  • Diagnosis and prognosis

4
System Identification
  • Previous damage detection methods
  • Time consuming
  • Require knowledge of location of damage
  • System Identification
  • Predict systems behavior based on measured data
  • Locate damage or deterioration of a structure
    based on changes in structural properties

5
System IdentificationProcess
  • Gather Data - Input (Base), Output (Roof)
  • Non-parametric Identification - find appropriate
    resampling
  • Select Data - Pick out high amplitude section
  • Parametric Models - ARX and ARMAX
  • Validate Models - compare fit between models to
    actual known Output data
  • Choose Model - Which model is best for this
    structure?

6
Non-Parametric Identification
  • Empirical Transfer Function Estimate (ETFE)
  • Frequency Response Function
  • Fourier Transform, input-output relationship
  • Noise included, less accurate
  • Spectrum Analysis
  • Output signal not correlated with noise?more
    accurate
  • Coherence Function
  • Indicates correlation coefficient between input
    and output sequences
  • Used to find new resampling period and frequency

7
Parametric Models
  • Auto-Regression Models A(q)
  • Where q is the shift operator
  • ARX (eXtra Input)
  • A(q)y(t) B(q)u(t) e(t)
  • ARMAX (Moving Average eXtra Input)
  • A(q)y(t) B(q)u(t) C(q)e(t)
  • Where C(q)e(t) is moving average of white noise

8
Model Validation
  • Maximize the percentage fit between model
    prediction and measured output acceleration
  • Minimize error between model and actual data
  • Akaikes Final Prediction Error (FPE)

9
Poles and Modal Properties
  • Poles
  • Z-transform for discrete time systems (similar to
    Laplace transform)
  • Amplitude of pole? Damping ratio
  • Phase of pole ?Frequency

10
Experiment Setup
Sensors
Mita Laboratory Keio University
11
Experiment Data collection
y output (Roof floor) u input (Base floor)
  • Sampling Frequency 500 Hz
  • Time 10 seconds

Acceleration (cm/s/s) vs. time (s)
12
Experiment Non-Parametric Identification
Coherence Function
  • Empirical Transfer Function Estimate (ETFE)

Power Spectrum
13
ExperimentPolishing and processing data
Original Data
Resampled Data
Sampling Frequency 500 Hz 50 Hz Sampling
Period 0.002 sec 0.02 sec Time 0 to 10
sec 2 to 10 sec (high amplitude section)
14
Experiment Parametric Models
  • ARX A(q)y(t) B(q)u(t) e(t)
  • A(q) 1 - 1.555 q-1 2.144 q-2 - 2.789 q-3
    2.904 q-4 - 2.712 q-5 2.068 q-6 - 1.49 q-7
    0.8884 q-8
  • B(q) -0.2265 q-2 0.1299 q-3 0.4918 q-4
    0.1551 q-5 - 0.2355 q-6 - 0.01897 q-7 - 0.04258
    q-8
  • ARMAX A(q)y(t) B(q)u(t) C(q)e(t)
  • A(q) 1 - 1.662 q-1 2.204 q-2 - 2.919 q-3
    3.058 q-4 - 2.862 q-5 2.168 q-6 - 1.623 q-7
    0.9367 q-8

  • B(q) -0.3074 q-2 0.1161 q-3 0.474 q-4
    0.1036 q-5 - 0.2755 q-6 - 0.04954 q-7 - 0.01773
    q-8

  • C(q) 1 - 0.5326 q-1 - 0.4614 q-2 0.4486 q-3 -
    0.5441 q-4 0.2542 q-5 0.1483 q-6 - 0.08879
    q-7

15
Experiment Results
  • ARX Model ARMAX Model

16
ExperimentPoles
Blue ETFE Green ARX Red ARMAX
Plot of Poles
Amplitude and Phase correspond with damping and
frequency
17
ExperimentModal Properties
  • Modal parameters (frequencies, mode shapes, and
    modal damping) are functions of the physical
    properties of the structure (mass, damping, and
    stiffness).
  • Changes in the physical properties, (i.e.
    reductions in stiffness) will cause detectable
    changes in these modal properties.

18
Conclusion and Future Work
  • For this system, ARMAX was a more suitable model
    (97.04 fit)
  • Modal properties can help identify damage and
    location
  • Future Work
  • Apply system identification methods to real data
    and structures
  • Learn and implement more parametric models

19
Acknowledgements
  • Dr. Masanobu Shinozuka, UC Irvine
  • Dr. Akira Mita, Keio University
  • Dr. Shirley Dyke, Washington Univ. St. Louis
  • Dr. Makola Abdullah, Florida AM Univ.
  • Dr. Yozo Fujino, University of Tokyo
  • National Science Foundation (NSF)
  • REUJAT Program

20
Thank You!
Write a Comment
User Comments (0)
About PowerShow.com