Title: Numerical%20Computations%20and%20Random%20Matrix%20Theory
1Numerical Computations and Random Matrix Theory
- Alan Edelman
- MIT Dept of Mathematics,
- Computer Science AI Laboratories
- Friday February 25, 2005
2Wigners Semi-Circle
- The classical most famous rand eig theorem
- Let S random symmetric Gaussian
- MATLAB Arandn(n) S(AA)/2
- S known as the Gaussian Orthogonal Ensemble
- Normalized eigenvalue histogram is a semi-circle
- Precise statements require n?? etc.
n20 s30000 d.05 matrix size, samples,
sample dist e gather up
eigenvalues im1 imaginary(1) or
real(0) for i1s, arandn(n)imsqrt(-1)randn(
n)a(aa')/(2sqrt(2n(im1))) veig(a)'
ee v end hold off m xhist(e,-1.5d1.5)
bar(x,mpi/(2dns)) axis('square') axis(-1.5
1.5 -1 2) hold on t-1.011
plot(t,sqrt(1-t.2),'r')
3Tidbit of interest to Matrix Computations
Audience
- Condition Numbers and Jacobians of Matrix
Functions and Factorizations or - What is matrix calculus??
4Matrix Functions and Factorizations
- e.g. f(A)A2 or L,Ulu(A) or Q,Rqr(A)
- U, R n(n1)/2 parameters
- L, Q n(n-1)/2 parameters
- Q globally (Householder)
- Q locally (tangent space Qantisym )
- The Jacobian or df or linearization is n2
x n2 - fS?S2 (sym) df is n(n1)/2 x n(n1)/2
- fQ?Q2 (orth) df is n(n-1)/2 x n(n-1)/2
5Condition number of a matrix function or
factorization
Jacobian Det J ?si(df)det(df) Example 1
f(A)A2 df(A) kron(I,A)kron(AT ,I) Example 2
f(A)A-1 df(A)-kron(A-T,A-1) df(A)A-12
? ?A A-1
6Matrix Factorization Jacobians
General
ALU AU?VT AX?X-1
AQR AQS (polar)
? uiin-i
? riim-i
? (?i2- ?j2)
? (?i?j)
? (?i-?j)2
Sym
Orthogonal
?sin(?i ?j)sin (?i- ?j)
Tridiagonal
TQ?QT
? (ti1,i)/ ?qi
7Tidbit of interest to Matrix Computations
Audienceand pure mathematicians!
- The most analytical random matrices seen from on
high
8Same structure everywhere!
Orthog Matrix MATLAB (Arandn(n)
Brandn(n))
Hermite Sym Eig eig(AA)
Laguerre SVD eig(AA)
Jacobi GSVD gsvd(A,B)
Fourier Eig U,Rqr(AiB)
9Same structure everywhere!
Orthog Matrix Weight Stats
Graph Theory SymSpace
Hermite Sym Eig exp(-x2) Normal Complete Graph non-compact A,AI,AII
Laguerre SVD xae-x Chi-squared Bipartite Graph non-compact AIII,BDI,CII
Jacobi GSVD (1-x)a x (1x)ß Beta Regular Graph compact A, AI, AII, C, D, CI, D, DIII
Fourier Eig ei? compact AIII, BDI, CDI
10Tidbit of interest to Matrix Computations
Audienceand combinatorists!
- The longest increasing subsequence
11Longest Increasing Subsequence(n4)
Green 4 Yellow 3 Red 2 Purple 1
1 2 3 4 2 1 3 4 3 1 2 4 4 1 2 3
1 2 4 3 2 1 4 3 3 1 4 2 4 1 3 2
1 3 2 4 2 3 1 4 3 2 1 4 4 2 1 3
1 3 4 2 2 3 4 1 3 2 4 1 4 2 3 1
1 4 2 3 2 4 1 3 3 4 1 2 4 3 1 2
1 4 3 2 2 4 3 1 3 4 2 1 4 3 2 1
12Random Matrix Result
- Permutations on 1..n with longest increasing
subsequence k is - E ( tr(Qk)2n) . The 2nth moment of the
absolute trace of random kxk orthogonal matrices - Longest increasing subsequence is the parallel
complexity of an upper triangular solve with
sparsity given by - Uij(p) ?0 if p(i)p(j) and ij
13Haar or not Haar?
14Tidbit!
- Random Tridiagonalization leads to eigenvalues of
billion by billion matrix!
15sym matrix to tridiagonal form
G ?6
?6 G ?5
?5 G ?4
?4 G ?3
?3 G ?2
?2 G ?1
?1 G
Same eigenvalue distribution as AA O(n)
storage !! O(n) compute
16General beta
G ?6?
?6? G ?5?
?5? G ?4?
?4? G ?3?
?3? G ?2?
?2? G ??
?? G
beta 1 reals 2 complexes 4 quaternions
Bidiagonal Version corresponds To Wishart
matrices of Statistics
17Largest Eigenvalue of Hermite
18Painlevé Equations
19MATLAB
- beta1 n1e9 opts.disp0opts.issym1
- alpha10 kround(alphan(1/3)) cutoff
parameters - dsqrt(chi2rnd( beta(n-1(n-k-1))))'
- Hspdiags( d,1,k,k)spdiags(randn(k,1),0,k,k)
- H(HH')/sqrt(4nbeta)
- eigs(H,1,1,opts)
20Tricks to get O(n9) speedup
- Sparse matrix storage (Only O(n) storage is used)
- Tridiagonal Ensemble Formulas (Any beta is
available due to the tridiagonal ensemble) - The Lanczos Algorithm for Eigenvalue Computation
( This allows the computation of the extreme
eigenvalue faster than typical general purpose
eigensolvers.) - The shift-and-invert accelerator to Lanczos and
Arnoldi (Since we know the eigenvalues are near
1, we can accelerate the convergence of the
largest eigenvalue) - The ARPACK software package as made available
seamlessly in MATLAB (The Arnoldi package
contains state of the art data structures and
numerical choices.) - The observation that if k 10n1/3 , then the
largest eigenvalue is determined numerically by
the top k k segment of n. (This is an
interesting mathematical statement related to the
decay of the Airy function.)
21Tidbit of interest to Matrix Computations
AudienceStochastic Eigenequations
- Continuous vs Discrete
- Diff Eqns Matrix Comps Cont Eig Matrix
Eigs - Add probability
- Stochastic Differential Equations Stochastic
Eigenequations - Finite Random Matrix Theory
22Spacings of eigs of AA
23Riemann Zeta Zeros
24Stochastic Operator
25Everyones Favorite Tridiagonal
-2 1
1 -2 1
1
1 -2
26Everyones Favorite Tridiagonal
-2 1
1 -2 1
1
1 -2
G
G
G
1 (ßn)1/2
27Stochastic Operator Limit
28Tidbit
- eig(AB) eig(A) eig(B) ?????
29Free Probability vs Classical Probability
30Random Matrix Calculator
31How to use calculator
32Steps 1 and 2
33Steps 3 and 4
34Steps 5 and 6
35Multivariate Orthogonal PolynomialsHypergeometr
ics of Matrix Argument
- The important special functions of the 21st
century - Begin with w(x) on I
- ? p?(x)p?(x) ?(x)ß ?i w(xi)dxi d??
- Jack Polynomials orthogonal for w1 on the unit
circle. Analogs of xm
36Multivariate Hypergeometric Functions
37Multivariate Hypergeometric Functions
38Plamens clever idea
39Smallest eigenvalue statistics
Arandn(m,n) hist(min(svd(A).2))
40Symbolic MOPS applications
Arandn(n) S(AA)/2 trace(S4)
det(S3)
41Summary
- Linear Algebra Randomness !!!
-
42Mops (Dumitriu etc.) Symbolic
43Symbolic MOPS applications
ß3 hist(eig(S))
44(No Transcript)
45Spacings
- Take a large collection of consecutive
zeros/eigenvalues. - Normalize so that average spacing 1.
- Spacing Function Histogram of consecutive
differences (the (k1)st the kth) - Pairwise Correlation Function Histogram of all
possible differences (the kth the jth) - Conjecture These functions are the same for
random matrices and Riemann zeta
46Largest Eigenvalue Plots
47MATLAB
- beta1 n1e9 opts.disp0opts.issym1
- alpha10 kround(alphan(1/3)) cutoff
parameters - dsqrt(chi2rnd( beta(n-1(n-k-1))))'
- Hspdiags( d,1,k,k)spdiags(randn(k,1),0,k,k)
- H(HH')/sqrt(4nbeta)
- eigs(H,1,1,opts)
48Open Problems
The distribution for general beta Seems to be
governed by a convection-diffusion equation
49Random matrix tools!
50Tidbit of interest to Matrix Computations
Audienceand combinatorists!
- The longest increasing subsequence
51Numerical Analysis Condition Numbers
- ?(A) condition number of A
- If AU?V is the svd, then ?(A) ?max/?min .
- Alternatively, ?(A) ?? max (AA)/?? min (AA)
- One number that measures digits lost in finite
precision and general matrix badness - Smallgood
- Largebad
- The condition of a random matrix???
52Von Neumann co.
- Solve Axb via x (AA) -1A b
- M ?A-1
- Matrix Residual AM-I2
- AM-I2lt 200?2 n ?
- How should we estimate ??
- Assume, as a model, that the elements of A are
independent standard normals!
?
53Von Neumann co. estimates (1947-1951)
- For a random matrix of order n the expectation
value has been shown to be about n - Goldstine, von Neumann
- we choose two different values of ?, namely n
and ?10n - Bargmann, Montgomery, vN
- With a probability 1 ? lt 10n
- Goldstine, von Neumann
-
X ?
54Random cond numbers, n??
Distribution of ?/n
Experiment with n200
55Finite n
56Condition Number Distributions
Real n x n, n?8
- Generalizations
- ß 1real, 2complex
- finite matrices
- rectangular m x n
Complex n x n, n?8
57Condition Number Distributions
Square, n?8 P(?/nß gt x) (2ßß-1/G(ß))/xß
(All Betas!!) General Formula P(?gtx) Cµ/x
ß(n-m1), where µ ß(n-m1)/2th moment of the
largest eigenvalue of Wm-1,n1 (ß) and C
is a known geometrical constant. Density for the
largest eig of W is known in terms of
1F1((ß/2)(n1), ((ß/2)(nm-1) -(x/2)Im-1) from
which µ is available Tracy-Widom law applies
probably all beta for large m,n. Johnstone shows
at least beta1,2.
Real n x n, n?8
Complex n x n, n?8